Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import math
|
|
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
4 |
|
@@ -12,36 +13,32 @@ configs = [
|
|
12 |
]
|
13 |
|
14 |
config = configs[0]
|
15 |
-
new_model = tf.keras.models.load_model(config["model"])
|
16 |
|
17 |
-
|
18 |
-
entrada = entrada.reshape((-1, config["size"], config["size"], 3))
|
19 |
-
prediction = new_model.predict(entrada).flatten()
|
20 |
|
|
|
|
|
|
|
|
|
21 |
if len(prediction) > 1:
|
22 |
-
|
23 |
else:
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
if probabilidade > 45:
|
27 |
-
label = "Glaucoma"
|
28 |
-
elif probabilidade > 25:
|
29 |
-
label = "Incerto"
|
30 |
-
else:
|
31 |
-
label = "N茫o glaucoma"
|
32 |
-
|
33 |
-
return {"R贸tulo": label, "Probabilidade de glaucoma (0 - 100)": probabilidade}
|
34 |
|
35 |
-
|
36 |
-
fn=
|
37 |
inputs=gr.inputs.Image(shape=(config["size"], config["size"])),
|
38 |
outputs=[
|
39 |
-
|
40 |
-
|
41 |
],
|
42 |
examples=["001.jpg", "002.jpg", "225.jpg"],
|
43 |
-
flagging_options=["
|
44 |
-
allow_flagging="manual"
|
45 |
-
)
|
46 |
-
|
47 |
-
interface.launch()
|
|
|
1 |
import math
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
|
|
|
13 |
]
|
14 |
|
15 |
config = configs[0]
|
|
|
16 |
|
17 |
+
new_model = tf.keras.models.load_model(config["model"])
|
|
|
|
|
18 |
|
19 |
+
def classify_image(inp):
|
20 |
+
inp = inp.reshape((-1, config["size"], config["size"], 3))
|
21 |
+
prediction = new_model.predict(inp).flatten()
|
22 |
+
print(prediction)
|
23 |
if len(prediction) > 1:
|
24 |
+
probability = 100 * math.exp(prediction[0]) / (math.exp(prediction[0]) + math.exp(prediction[1]))
|
25 |
else:
|
26 |
+
probability = round(100. / (1 + math.exp(-prediction[0])), 2)
|
27 |
+
if probability > 45:
|
28 |
+
return "Glaucoma", probability
|
29 |
+
if probability > 25:
|
30 |
+
return "Unclear", probability
|
31 |
+
return "Not glaucoma", probability
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
gr.Interface(
|
35 |
+
fn=classify_image,
|
36 |
inputs=gr.inputs.Image(shape=(config["size"], config["size"])),
|
37 |
outputs=[
|
38 |
+
gr.outputs.Textbox(label="Label"),
|
39 |
+
gr.outputs.Textbox(label="Glaucoma probability (0 - 100)"),
|
40 |
],
|
41 |
examples=["001.jpg", "002.jpg", "225.jpg"],
|
42 |
+
flagging_options=["Correct label", "Incorrect label"],
|
43 |
+
allow_flagging="manual",
|
44 |
+
).launch()
|
|
|
|