Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,12 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
import numpy as np
|
4 |
|
5 |
-
models = [
|
6 |
-
{"name": "my_model_2.h5", "size": 512},
|
7 |
-
{"name": "my_model.h5", "size": 224},
|
8 |
-
]
|
9 |
-
def preprocess_image(image):
|
10 |
-
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
11 |
-
temp_file.write(image.read())
|
12 |
-
temp_file.close()
|
13 |
-
return temp_file.name
|
14 |
|
15 |
-
def classify_image(
|
16 |
model_config = next(m for m in models if m["name"] == model_name)
|
17 |
model = tf.keras.models.load_model(model_name)
|
18 |
-
image = Image.open(image_path).convert("RGB")
|
19 |
-
image = image.resize((model_config["size"], model_config["size"]))
|
20 |
-
image = np.array(image) / 255.0
|
21 |
input_image = np.expand_dims(image, axis=0)
|
22 |
prediction = model.predict(input_image).flatten()
|
23 |
if len(prediction) > 1:
|
@@ -36,7 +25,6 @@ inputs = [
|
|
36 |
gr.inputs.Image(shape=(224, 224), label="Eye image"),
|
37 |
gr.inputs.Dropdown(choices=[m["name"] for m in models], label="Model"),
|
38 |
]
|
39 |
-
|
40 |
outputs = [
|
41 |
gr.outputs.Textbox(label="Predicted label"),
|
42 |
gr.outputs.Textbox(label="Probability of glaucoma (0-100)"),
|
@@ -44,7 +32,7 @@ outputs = [
|
|
44 |
|
45 |
examples = [
|
46 |
[np.zeros((224, 224, 3)), "my_model.h5"],
|
47 |
-
[np.ones((224, 224, 3)) * 255, "my_model_2.h5"]
|
48 |
]
|
49 |
|
50 |
-
gr.Interface(classify_image, inputs, outputs, examples=examples).launch()
|
|
|
1 |
+
import numpy as np
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
|
|
4 |
|
5 |
+
models = [{"name": "my_model_2.h5", "size": 512}, {"name": "my_model.h5", "size": 224}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
def classify_image(image, model_name):
|
8 |
model_config = next(m for m in models if m["name"] == model_name)
|
9 |
model = tf.keras.models.load_model(model_name)
|
|
|
|
|
|
|
10 |
input_image = np.expand_dims(image, axis=0)
|
11 |
prediction = model.predict(input_image).flatten()
|
12 |
if len(prediction) > 1:
|
|
|
25 |
gr.inputs.Image(shape=(224, 224), label="Eye image"),
|
26 |
gr.inputs.Dropdown(choices=[m["name"] for m in models], label="Model"),
|
27 |
]
|
|
|
28 |
outputs = [
|
29 |
gr.outputs.Textbox(label="Predicted label"),
|
30 |
gr.outputs.Textbox(label="Probability of glaucoma (0-100)"),
|
|
|
32 |
|
33 |
examples = [
|
34 |
[np.zeros((224, 224, 3)), "my_model.h5"],
|
35 |
+
[np.ones((224, 224, 3)) * 255, "my_model_2.h5"]
|
36 |
]
|
37 |
|
38 |
+
gr.Interface(classify_image, inputs, outputs, examples=examples, title="Glaucoma Classification").launch()
|