DHEIVER commited on
Commit
beaf59e
·
1 Parent(s): 101ec35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -1,10 +1,11 @@
1
- import numpy as np
2
- import gradio as gr
3
- import tensorflow as tf
4
-
5
- models = [ {"name": "my_model_2.h5", "size": 512}, {"name": "my_model.h5", "size": 224},]
6
-
7
  from PIL import Image
 
 
 
 
 
 
 
8
 
9
  def classify_image(image_path, model_name):
10
  model_config = next(m for m in models if m["name"] == model_name)
@@ -26,19 +27,19 @@ def classify_image(image_path, model_name):
26
  label = "Not glaucoma"
27
  return label, probability
28
 
29
-
30
  inputs = [
31
- gr.inputs.Image(shape=(224, 224), label="Eye image"),
32
  gr.inputs.Dropdown(choices=[m["name"] for m in models], label="Model"),
33
  ]
 
34
  outputs = [
35
  gr.outputs.Textbox(label="Predicted label"),
36
  gr.outputs.Textbox(label="Probability of glaucoma (0-100)"),
37
  ]
38
 
39
  examples = [
40
- [np.zeros((224, 224, 3)), "my_model.h5"],
41
- [np.ones((224, 224, 3)) * 255, "my_model_2.h5"]
42
  ]
43
 
44
  gr.Interface(classify_image, inputs, outputs, examples=examples).launch()
 
 
 
 
 
 
 
1
  from PIL import Image
2
+ import tempfile
3
+
4
+ def preprocess_image(image):
5
+ temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
6
+ temp_file.write(image.read())
7
+ temp_file.close()
8
+ return temp_file.name
9
 
10
  def classify_image(image_path, model_name):
11
  model_config = next(m for m in models if m["name"] == model_name)
 
27
  label = "Not glaucoma"
28
  return label, probability
29
 
 
30
  inputs = [
31
+ gr.inputs.Image(label="Eye image"),
32
  gr.inputs.Dropdown(choices=[m["name"] for m in models], label="Model"),
33
  ]
34
+
35
  outputs = [
36
  gr.outputs.Textbox(label="Predicted label"),
37
  gr.outputs.Textbox(label="Probability of glaucoma (0-100)"),
38
  ]
39
 
40
  examples = [
41
+ [preprocess_image(open("example_image.jpg", "rb")), "my_model.h5"],
42
+ [preprocess_image(open("example_image_2.jpg", "rb")), "my_model_2.h5"]
43
  ]
44
 
45
  gr.Interface(classify_image, inputs, outputs, examples=examples).launch()