Update app.py
Browse files
app.py
CHANGED
|
@@ -85,52 +85,50 @@ def get_tiles(img, mode=0):
|
|
| 85 |
result.append({'img':img3[i], 'idx':i})
|
| 86 |
return result, n_tiles_with_info >= n_tiles
|
| 87 |
|
| 88 |
-
def getitem(img,tile_mode):
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
#
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
return torch.tensor(images)
|
| 120 |
def predict_label(im):
|
| 121 |
-
data1=getitem(im,0)
|
| 122 |
-
data2=getitem(im,2)
|
| 123 |
-
LOGITS=[]
|
| 124 |
-
LOGITS2=[]
|
|
|
|
| 125 |
with torch.no_grad():
|
| 126 |
data1 = data1.to(device)
|
| 127 |
logits = models[0](data1)
|
| 128 |
LOGITS.append(logits)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
LOGITS2.append(logits)
|
| 134 |
|
| 135 |
LOGITS = (torch.cat(LOGITS).sigmoid().cpu() + torch.cat(LOGITS2).sigmoid().cpu()) / 2
|
| 136 |
PREDS = LOGITS.sum(1).round().numpy()
|
|
@@ -138,7 +136,6 @@ def predict_label(im):
|
|
| 138 |
|
| 139 |
|
| 140 |
|
| 141 |
-
|
| 142 |
def classify_images(im):
|
| 143 |
pred,idx,probs=predict_label(im)
|
| 144 |
s='Your submitted case has Prostate cancer of ISUP Grade '+pred
|
|
|
|
| 85 |
result.append({'img':img3[i], 'idx':i})
|
| 86 |
return result, n_tiles_with_info >= n_tiles
|
| 87 |
|
| 88 |
+
def getitem(img, tile_mode):
|
| 89 |
+
tiff_file = img
|
| 90 |
+
image = skimage.io.MultiImage(tiff_file)[0]
|
| 91 |
+
tiles, OK = get_tiles(image, tile_mode)
|
| 92 |
+
|
| 93 |
+
idxes = np.random.choice(list(range(n_tiles)), n_tiles, replace=False)
|
| 94 |
+
|
| 95 |
+
n_row_tiles = int(np.sqrt(n_tiles))
|
| 96 |
+
images = np.zeros((image_size * n_row_tiles, image_size * n_row_tiles, 3))
|
| 97 |
+
for h in range(n_row_tiles):
|
| 98 |
+
for w in range(n_row_tiles):
|
| 99 |
+
i = h * n_row_tiles + w
|
| 100 |
+
|
| 101 |
+
if len(tiles) > idxes[i]:
|
| 102 |
+
this_img = tiles[idxes[i]]['img']
|
| 103 |
+
else:
|
| 104 |
+
this_img = np.ones((image_size, image_size, 3)).astype(np.uint8) * 255
|
| 105 |
+
this_img = 255 - this_img
|
| 106 |
+
h1 = h * image_size
|
| 107 |
+
w1 = w * image_size
|
| 108 |
+
images[h1:h1 + image_size, w1:w1 + image_size] = this_img
|
| 109 |
+
|
| 110 |
+
images = images.astype(np.float32)
|
| 111 |
+
images /= 255
|
| 112 |
+
images = images.transpose(2, 0, 1)
|
| 113 |
+
|
| 114 |
+
# Add a batch dimension
|
| 115 |
+
return torch.tensor(images).unsqueeze(0)
|
| 116 |
+
|
| 117 |
+
|
|
|
|
|
|
|
| 118 |
def predict_label(im):
|
| 119 |
+
data1 = getitem(im, 0)
|
| 120 |
+
data2 = getitem(im, 2)
|
| 121 |
+
LOGITS = []
|
| 122 |
+
LOGITS2 = []
|
| 123 |
+
|
| 124 |
with torch.no_grad():
|
| 125 |
data1 = data1.to(device)
|
| 126 |
logits = models[0](data1)
|
| 127 |
LOGITS.append(logits)
|
| 128 |
|
| 129 |
+
data2 = data2.to(device)
|
| 130 |
+
logits2 = models[0](data2)
|
| 131 |
+
LOGITS2.append(logits2)
|
|
|
|
| 132 |
|
| 133 |
LOGITS = (torch.cat(LOGITS).sigmoid().cpu() + torch.cat(LOGITS2).sigmoid().cpu()) / 2
|
| 134 |
PREDS = LOGITS.sum(1).round().numpy()
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
|
|
|
|
| 139 |
def classify_images(im):
|
| 140 |
pred,idx,probs=predict_label(im)
|
| 141 |
s='Your submitted case has Prostate cancer of ISUP Grade '+pred
|