File size: 3,271 Bytes
7cfa5bf
8072750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfa5bf
 
 
 
 
 
 
8072750
7cfa5bf
 
 
 
 
 
 
8072750
 
 
 
7cfa5bf
 
8072750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfa5bf
8072750
 
 
 
 
7cfa5bf
8072750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfa5bf
 
 
 
 
 
 
 
8072750
 
 
7cfa5bf
 
 
 
 
 
 
 
8072750
7cfa5bf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import requests
import json
import os
from dotenv import load_dotenv

# 加载.env文件中的环境变量
load_dotenv()

# 从环境变量中读取配置
API_URL = os.getenv("API_URL")
API_TOKEN = os.getenv("API_TOKEN")

# 验证必要的环境变量
if not API_URL or not API_TOKEN:
    raise ValueError("make sure API_URL & API_TOKEN")

print(f"[INFO] starting:")
print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-12:]}")
print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}")  # 只显示token的前10位和后10位

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""

def respond(
    message,
    history: list[dict],  # 修改为新的消息格式
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    # 添加历史消息
    messages.extend(history)
    
    # 添加当前用户消息
    messages.append({"role": "user", "content": message})

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_TOKEN}"
    }

    data = {
        "model": "/data/DMind-1",
        "stream": False,
        "messages": messages,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": 20,
        "min_p": 0.1,
        "max_tokens": 32768
    }

    print(f"[INFO] process user msg...")
    print(f"[INFO] sysMsg: {system_message}")
    print(f"[INFO] userMsg: {message}")
    print(f"[INFO] modelParam: temperature={temperature}, top_p={top_p}")
    print(f"[INFO] reqData: {data}")

    try:
        with requests.post(API_URL, headers=headers, json=data) as r:
            if r.status_code == 200:
                json_response = r.json()
                if 'choices' in json_response and len(json_response['choices']) > 0:
                    content = json_response['choices'][0].get('message', {}).get('content', '')
                    if content:
                        # if '<think>' in content and '</think>' in content:
                            # content = content.split('</think>')[-1].strip()
                        print(f"[INFO] response: {content}")
                        return content
            return "Service temporarily unavailable"
    except Exception as e:
        print(f"[ERROR] Request error: {e}")
        return "Service error occurred"


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are DMind AI Assistant, built by DMind.AI. Never present as Qwen, ChatGPT, Tongyi, OpenAI, etc.", label="System message"),
        gr.Slider(minimum=1, maximum=32768, value=16384, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    type="messages"  # 指定使用新的消息格式
)


if __name__ == "__main__":
    demo.launch()