DMind-1 / app.py
nanova's picture
update
cade7ed
raw
history blame
7.09 kB
import gradio as gr
import requests
import json
import os
from dotenv import load_dotenv
load_dotenv()
API_URL = os.getenv("API_URL")
API_TOKEN = os.getenv("API_TOKEN")
if not API_URL or not API_TOKEN:
raise ValueError("invalid API_URL || API_TOKEN")
print(f"[INFO] starting:")
print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-12:]}")
print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}")
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
def respond(
message,
history: list[dict],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
messages.extend(history)
messages.append({"role": "user", "content": message})
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_TOKEN}"
}
data = {
"model": "/data/DMind-1",
"stream": True,
"messages": messages,
"temperature": temperature,
"top_p": top_p,
"top_k": 20,
"min_p": 0.1,
"max_tokens": 32768
}
try:
with requests.post(API_URL, headers=headers, json=data, stream=True) as r:
if r.status_code == 200:
current_response = ""
for line in r.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
try:
json_response = json.loads(line[6:])
if 'choices' in json_response and len(json_response['choices']) > 0:
delta = json_response['choices'][0].get('delta', {})
if 'content' in delta:
content = delta['content']
if content:
current_response += content
if len(current_response) > 16:
if '<think>' in current_response:
current_response = current_response.replace('<think>', '<details open><summary>Thinking</summary>\n\n```')
if '</think>' in current_response:
current_response = current_response.replace('</think>', '```\n\n</details>')
if '**Final Answer**' in current_response:
current_response = current_response.replace('**Final Answer**', '')
formatted_response = current_response[:-16]
formatted_response = formatted_response.replace('<', '&lt;').replace('>', '&gt;')
formatted_response = formatted_response.replace('&lt;details open&gt;', '<details open>')
formatted_response = formatted_response.replace('&lt;/details&gt;', '</details>')
formatted_response = formatted_response.replace('&lt;summary&gt;', '<summary>')
formatted_response = formatted_response.replace('&lt;/summary&gt;', '</summary>')
formatted_response = formatted_response.replace('*', '\\*')
yield formatted_response
except json.JSONDecodeError:
continue
if current_response:
# current_response = current_response.replace('<details open>', '<details>')
if '**Final Answer**' in current_response:
current_response = current_response.replace('**Final Answer**', '')
formatted_response = current_response
formatted_response = formatted_response.replace('<', '&lt;').replace('>', '&gt;')
formatted_response = formatted_response.replace('&lt;details open&gt;', '<details open>')
# formatted_response = formatted_response.replace('&lt;details&gt;', '<details>')
formatted_response = formatted_response.replace('&lt;/details&gt;', '</details>')
formatted_response = formatted_response.replace('&lt;summary&gt;', '<summary>')
formatted_response = formatted_response.replace('&lt;/summary&gt;', '</summary>')
formatted_response = formatted_response.replace('*', '\\*')
yield formatted_response
else:
print(f"[ERROR] Bad status code: {r.status_code}, response: {r.text}")
yield "Service temporarily unavailable"
except Exception as e:
print(f"[ERROR] Request error: {e}")
yield "Service error occurred"
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are DMind AI Assistant, built by DMind.AI. Never present as Qwen, ChatGPT, Tongyi, OpenAI, etc.", label="System message"),
gr.Slider(minimum=1, maximum=32768, value=16384, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
type="messages",
css="""
.prose pre {
white-space: pre-wrap !important;
word-wrap: break-word !important;
overflow-wrap: break-word !important;
max-width: 100% !important;
margin-bottom: 1.5em !important;
}
.prose code {
white-space: pre-wrap !important;
word-wrap: break-word !important;
overflow-wrap: break-word !important;
max-width: 100% !important;
}
.prose pre code {
white-space: pre-wrap !important;
word-wrap: break-word !important;
overflow-wrap: break-word !important;
max-width: 100% !important;
}
.accordion {
margin: 0 !important;
border: none !important;
}
.accordion-header {
background: #f0f0f0 !important;
padding: 8px !important;
cursor: pointer !important;
}
.accordion-content {
padding: 8px !important;
}
"""
)
if __name__ == "__main__":
demo.launch()