import gradio as gr import requests import json import os from dotenv import load_dotenv load_dotenv() API_URL = os.getenv("API_URL") API_TOKEN = os.getenv("API_TOKEN") if not API_URL or not API_TOKEN: raise ValueError("invalid API_URL || API_TOKEN") print(f"[INFO] starting:") print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-12:]}") print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}") """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ def respond( message, history: list[dict], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] # 添加历史消息 messages.extend(history) # 添加当前用户消息 messages.append({"role": "user", "content": message}) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {API_TOKEN}" } data = { "model": "/data/DMind-1", "stream": True, "messages": messages, "temperature": temperature, "top_p": top_p, "top_k": 20, "min_p": 0.1, "max_tokens": 32768 } print(f"[INFO] process user msg...") print(f"[INFO] userMsg: {message}") try: with requests.post(API_URL, headers=headers, json=data, stream=True) as r: if r.status_code == 200: current_response = "" buffer = "" # 用于累积可能被分割的标记 in_think_block = False found_final_answer = False for line in r.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): try: json_response = json.loads(line[6:]) if 'choices' in json_response and len(json_response['choices']) > 0: delta = json_response['choices'][0].get('delta', {}) if 'content' in delta: content = delta['content'] if content: # 将新内容添加到缓冲区 buffer += content # 检查缓冲区中是否包含完整的标记 if not in_think_block and '' in buffer: in_think_block = True buffer = buffer.split('')[-1] if in_think_block and '' in buffer: in_think_block = False buffer = buffer.split('')[-1] if not found_final_answer and '**Final Answer**' in buffer: found_final_answer = True buffer = buffer.split('**Final Answer**')[-1] # 如果不在think块内,就累积内容 if not in_think_block: current_response += buffer yield current_response buffer = "" # 清空缓冲区 except json.JSONDecodeError: continue print(f"[INFO] final response: {current_response}") else: print(f"[ERROR] Bad status code: {r.status_code}, response: {r.text}") yield "Service temporarily unavailable" except Exception as e: print(f"[ERROR] Request error: {e}") yield "Service error occurred" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are DMind AI Assistant, built by DMind.AI. Never present as Qwen, ChatGPT, Tongyi, OpenAI, etc.", label="System message"), gr.Slider(minimum=1, maximum=32768, value=16384, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], type="messages" ) if __name__ == "__main__": demo.launch()