File size: 1,177 Bytes
372cb74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import torch
import streamlit as st
from transformers import pipeline
from random import choice
with open("sentences.pt", 'rb') as f:
sentences = torch.load(f)
baseline_classifier = pipeline(
model="Dagobert42/mobilebert-uncased-biored-finetuned-ner",
task="ner",
aggregation_strategy="simple"
)
augmented_classifier = pipeline(
model="Dagobert42/mobilebert-uncased-biored-augmented-ner",
task="ner",
aggregation_strategy="simple"
)
st.title("Semantic Frame Augmentation")
st.caption("Analysing difficult low-resource domains with only a handful of examples")
st.write("This space uses a googel/mobilebert-uncased model for named entity ")
augment = st.toggle('Use augmented model for ', value=False)
sentence = choice(sentences)
if augment:
st.write("with augmentation:")
tokens = augmented_classifier(sentence)
else:
st.write("without augmentation:")
tokens = baseline_classifier(sentence)
txt = st.text_area(
"Text to analyze",
sentence,
max_chars=500
)
st.subheader("Entity analysis:")
for token in tokens:
st.write(token['entity_group'])
st.write(sentence[token["start"] : token["end"]])
|