File size: 971 Bytes
372cb74 00a6def ec77f50 00a6def 372cb74 ec77f50 372cb74 00a6def 372cb74 a5515f4 125cf0c 372cb74 00a6def 372cb74 4330a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
from random import choice
from annotated_text import annotated_text
from resources import *
from helpers import *
base_model = "xlnet-base-cased"
session = load_variables()
sentences = load_sentences()
baseline_classifier = load_model(f"Dagobert42/{base_model}-biored-finetuned")
augmented_classifier = load_model(f"Dagobert42/{base_model}-biored-augmented")
st.title("Semantic Frame Augmentation")
st.subheader("Analysing difficult low-resource domains with only a handful of examples")
st.write("This space uses a xlnet-base-cased model for NER")
augment = st.toggle('Use augmented model for NER', value=False)
txt = st.text_area(
"Text to analyze",
sentence,
max_chars=500
)
if augment:
st.write("with augmentation:")
tokens = augmented_classifier(txt)
else:
st.write("without augmentation:")
tokens = baseline_classifier(txt)
st.subheader("Entity analysis:")
annotated_text(annotate_sentence(txt, tokens))
|