Gemma1B / app.py
Dagriffpatchfan's picture
Update app.py
145e38d verified
raw
history blame
1.79 kB
import gradio as gr
from llama_cpp import Llama
# Load the model (only once)
llm = Llama.from_pretrained(
repo_id="google/gemma-3-1b-it-qat-q4_0-gguf",
filename="gemma-3-1b-it-q4_0.gguf",
n_ctx=32768,
verbose=False # Mute llama.cpp logs
)
# Define the function that runs the model
def chat_with_gemma(user_input, temperature, top_p, frequency_penalty, presence_penalty):
full_prompt = f"{user_input}\nAnswer in no more than 150 words."
response = llm.create_chat_completion(
messages=[{"role": "user", "content": full_prompt}],
max_tokens=200,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty
)
return response["choices"][0]["message"]["content"].strip()
# Set up the Gradio interface
demo = gr.Interface(
fn=chat_with_gemma,
inputs=[
gr.Textbox(label="Enter your message to Gemma"),
gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"),
gr.Slider(0.0, 2.0, value=0.4, step=0.1, label="Frequency Penalty"),
gr.Slider(0.0, 2.0, value=0.2, step=0.1, label="Presence Penalty")
],
outputs=gr.Textbox(label="Gemma's Response", lines=8),
title="Talk to Gemma",
description="Generate short responses using Google's Gemma model with adjustable settings."
)
# Launch the app
demo.launch(share=True, enable_api=False)
#demo.launch(auth=("username", "password"))
#enable the above and remove the current demo.launch settings to enable api useage, but enable a password and username to prevent someone form using your api. Currently set to default username 'username' and default password 'password'.