DamLoan commited on
Commit
edad1be
Β·
verified Β·
1 Parent(s): b79f44c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +88 -59
app.py CHANGED
@@ -1,64 +1,93 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ import tempfile
4
+ import shutil
5
+ import pandas as pd
6
+ from PIL import Image
7
+ from preprocess import convert_pdf_to_images, preprocess_image
8
+ from llm_utils import load_image, generate_response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ # Global temporary directory for image processing
11
+ temp_dir = tempfile.mkdtemp()
12
+
13
+ pdf_image_map = {} # Map from PDF to its image list
14
+ image_preview_map = {} # Map from image name to full path
15
+
16
+
17
+ def extract_images_from_pdfs(pdf_files):
18
+ global pdf_image_map, image_preview_map
19
+ pdf_image_map.clear()
20
+ image_preview_map.clear()
21
+
22
+ previews = []
23
+
24
+ for pdf in pdf_files:
25
+ image_paths = convert_pdf_to_images(pdf.name, temp_dir)
26
+ pdf_image_map[pdf.name] = image_paths
27
+
28
+ for img_path in image_paths:
29
+ img_name = os.path.basename(img_path)
30
+ image_preview_map[img_name] = img_path
31
+ previews.append((img_name, img_path))
32
+
33
+ # Return preview (tuples: filename, image_path)
34
+ return [img for _, img in previews]
35
+
36
+
37
+ def process_selected_images(selected_images, output_excel_name):
38
+ results = []
39
+
40
+ for img_name in selected_images:
41
+ img_path = image_preview_map.get(img_name)
42
+ if img_path is None:
43
+ continue
44
+
45
+ processed = preprocess_image(img_path)
46
+ processed_path = os.path.join(temp_dir, f"processed_{img_name}")
47
+ Image.fromarray(processed).save(processed_path)
48
+
49
+ # Run LLM
50
+ pixel_values = load_image(processed_path)
51
+ response = generate_response(pixel_values)
52
+
53
+ # Clean filename to find source pdf
54
+ base_name = img_name.rsplit("_page_", 1)[0] + ".pdf"
55
+ results.append({"Source PDF": base_name, "Page Image": img_name, "LLM Output": response})
56
+
57
+ df = pd.DataFrame(results)
58
+ output_excel = os.path.join(temp_dir, output_excel_name)
59
+ df.to_excel(output_excel, index=False)
60
+ return output_excel
61
+
62
+
63
+ def reset_all():
64
+ shutil.rmtree(temp_dir)
65
+ os.makedirs(temp_dir, exist_ok=True)
66
+
67
+
68
+ with gr.Blocks() as demo:
69
+ gr.Markdown("## 🧠 PDF β†’ Image β†’ LLM β†’ Excel Output")
70
+
71
+ with gr.Row():
72
+ pdf_input = gr.File(file_types=[".pdf"], file_count="multiple", label="πŸ“Ž Upload multiple PDF files")
73
+ extract_btn = gr.Button("πŸ” Extract Images")
74
+
75
+ gallery = gr.Gallery(label="πŸ–ΌοΈ Choose images to process", columns=4, allow_preview=True, interactive=True, show_label=True).style(grid=4)
76
+ selected_images = gr.CheckboxGroup(choices=[], label="Select image filenames for processing")
77
+
78
+ with gr.Row():
79
+ output_name = gr.Textbox(label="πŸ“„ Output Excel filename", value="output.xlsx")
80
+ generate_btn = gr.Button("πŸš€ Generate Excel")
81
+
82
+ excel_output = gr.File(label="πŸ“₯ Download Excel")
83
+
84
+ def update_gallery(pdf_files):
85
+ previews = extract_images_from_pdfs(pdf_files)
86
+ choices = list(image_preview_map.keys())
87
+ return gr.update(value=previews), gr.update(choices=choices, value=[])
88
+
89
+ extract_btn.click(update_gallery, inputs=[pdf_input], outputs=[gallery, selected_images])
90
+ generate_btn.click(fn=process_selected_images, inputs=[selected_images, output_name], outputs=[excel_output])
91
 
92
  if __name__ == "__main__":
93
  demo.launch()