Spaces:
Sleeping
Sleeping
| import pandas as pd | |
| import numpy as np | |
| import streamlit as st | |
| from PIL import Image | |
| import random | |
| import sahi.utils.file | |
| from streamlit_image_comparison import image_comparison | |
| IMAGE_TO_URL = { | |
| 'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png', | |
| 'plant_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png', | |
| 'processing_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/processing-pid.png', | |
| 'prediction_visual.png' : 'https://d1afc1j4569hs1.cloudfront.net/prediction_visual.png' | |
| } | |
| st.set_page_config( | |
| page_title="P&ID Object Detection", | |
| layout="wide", | |
| initial_sidebar_state="expanded" | |
| ) | |
| st.title('P&ID Object Detection') | |
| st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow') | |
| st.caption('Developed by Deep Drawings Co.') | |
| if "output_1" not in st.session_state: | |
| st.session_state["output_1"] = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL['plant_pid.png']) | |
| if "output_2" not in st.session_state: | |
| st.session_state["output_2"] = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL['prediction_visual.png']) | |
| col1, col2, col3 = st.columns(3, gap='medium') | |
| with col1: | |
| with st.expander('How to use it'): | |
| st.markdown( | |
| ''' | |
| 1) Upload your P&ID or select example diagrams π¬ | |
| 2) Set confidence threshold π | |
| 3) Press to perform inference π | |
| 4) Visualize model predictions π | |
| ''' | |
| ) | |
| st.write('##') | |
| col1, col2, col3 = st.columns(3, gap='large') | |
| with col1: | |
| st.markdown('##### Input File') | |
| # set input image by upload | |
| image_file = st.file_uploader("Upload your diagram", type=["pdf"]) | |
| # set input images from examples | |
| def radio_func(option): | |
| option_to_id = { | |
| 'factory_pid.png' : 'A', | |
| 'plant_pid.png' : 'B', | |
| 'processing_pid.png' : 'C', | |
| } | |
| return option_to_id[option] | |
| radio = st.radio( | |
| 'Or select from the following examples', | |
| options = ['factory_pid.png', 'plant_pid.png', 'processing_pid.png'], | |
| format_func = radio_func, | |
| ) | |
| with col2: | |
| st.markdown('##### Preview') | |
| # visualize input image | |
| if image_file is not None: | |
| image = Image.open(image_file) | |
| else: | |
| image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[radio]) | |
| with st.container(border = True): | |
| st.image(image, use_column_width = True) | |
| with col3: | |
| st.markdown('##### Set model parameters') | |
| postprocess_match_threshold = st.slider( | |
| label = 'Select confidence threshold', | |
| min_value = 0.0, | |
| max_value = 1.0, | |
| value = 0.75, | |
| step = 0.25 | |
| ) | |
| postprocess_match_metric = st.slider( | |
| label = 'Select IoU threshold', | |
| min_value = 0.0, | |
| max_value = 1.0, | |
| value = 0.75, | |
| step = 0.25 | |
| ) | |
| st.write('##') | |
| col1, col2, col3 = st.columns([3, 1, 3]) | |
| with col2: | |
| submit = st.button("π Perform Prediction") | |
| st.write('##') | |
| st.markdown(f"##### Uploaded Image vs Model Prediction:") | |
| static_component = image_comparison( | |
| img1=st.session_state["output_1"], | |
| img2=st.session_state["output_2"], | |
| label1='Uploaded Diagram', | |
| label2='Model Inference', | |
| width=700, | |
| starting_position=50, | |
| show_labels=True, | |
| make_responsive=True, | |
| in_memory=True, | |
| ) | |