Spaces:
Runtime error
Runtime error
Update w/ LDA
Browse files- app.py +136 -11
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -3,8 +3,10 @@ import gradio as gr
|
|
| 3 |
import pandas as pd
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from sklearn.decomposition import LatentDirichletAllocation
|
| 7 |
from sklearn.feature_extraction.text import CountVectorizer
|
|
|
|
| 8 |
|
| 9 |
def concat_comments(sup_comment: list[str], comment: list[str]) -> list[str]:
|
| 10 |
format_s = "{s}\n{c}"
|
|
@@ -12,15 +14,138 @@ def concat_comments(sup_comment: list[str], comment: list[str]) -> list[str]:
|
|
| 12 |
format_s.format(s=s, c=c) for s, c in zip(sup_comment, comment)
|
| 13 |
]
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
df = pd.read_csv('./data/results.csv', index_col=0)
|
| 19 |
-
print(chose_context)
|
| 20 |
-
|
| 21 |
-
data = concat_comments(df.sup_comment, df.comment)
|
| 22 |
-
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
subreddits = df.subreddit.value_counts().index[:22]
|
| 25 |
|
| 26 |
weight_counts = {
|
|
@@ -55,7 +180,7 @@ def main(button, chose_context):
|
|
| 55 |
ax.legend(loc="upper right")
|
| 56 |
plt.xticks(rotation=70)
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
|
| 61 |
with gr.Blocks() as demo:
|
|
@@ -63,12 +188,12 @@ with gr.Blocks() as demo:
|
|
| 63 |
label="Plot type",
|
| 64 |
choices=['scatter_plot', 'heatmap', 'us_map', 'interactive_barplot', "radial", "multiline"], value='scatter_plot'
|
| 65 |
)
|
| 66 |
-
|
| 67 |
label="Context LDA",
|
| 68 |
-
choices=['comment', 'sup comment', 'sup comment + comment'], value='
|
| 69 |
)
|
| 70 |
plot = gr.Plot(label="Plot")
|
| 71 |
-
button.change(main, inputs=[button,
|
| 72 |
demo.load(main, inputs=[button], outputs=[plot])
|
| 73 |
|
| 74 |
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import numpy as np
|
| 6 |
+
import nltk, spacy, gensim
|
| 7 |
from sklearn.decomposition import LatentDirichletAllocation
|
| 8 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 9 |
+
from pprint import pprint
|
| 10 |
|
| 11 |
def concat_comments(sup_comment: list[str], comment: list[str]) -> list[str]:
|
| 12 |
format_s = "{s}\n{c}"
|
|
|
|
| 14 |
format_s.format(s=s, c=c) for s, c in zip(sup_comment, comment)
|
| 15 |
]
|
| 16 |
|
| 17 |
+
def sent_to_words(sentences):
|
| 18 |
+
for sentence in sentences:
|
| 19 |
+
yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations
|
| 20 |
+
|
| 21 |
+
def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): #'NOUN', 'ADJ', 'VERB', 'ADV'
|
| 22 |
+
texts_out = []
|
| 23 |
+
for sent in texts:
|
| 24 |
+
doc = nlp(" ".join(sent))
|
| 25 |
+
texts_out.append(" ".join([
|
| 26 |
+
token.lemma_ if token.lemma_ not in ['-PRON-'] else '' for token in doc if token.pos_ in allowed_postags
|
| 27 |
+
]))
|
| 28 |
+
return texts_out
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def main(button, choose_context):
|
| 32 |
df = pd.read_csv('./data/results.csv', index_col=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
if choose_context == 'comment':
|
| 35 |
+
data = df.comment
|
| 36 |
+
elif choose_context == 'sup comment':
|
| 37 |
+
data = df.sup_comment
|
| 38 |
+
elif choose_context == 'sup comment + comment':
|
| 39 |
+
data = concat_comments(df.sup_comment, df.comment)
|
| 40 |
+
|
| 41 |
+
data_words = list(sent_to_words(data))
|
| 42 |
+
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
| 43 |
+
data_lemmatized = lemmatization(data_words, allowed_postags=["NOUN", "ADJ"]) #select noun and verb
|
| 44 |
+
|
| 45 |
+
vectorizer = CountVectorizer(
|
| 46 |
+
analyzer='word',
|
| 47 |
+
min_df=10,
|
| 48 |
+
stop_words='english',
|
| 49 |
+
lowercase=True,
|
| 50 |
+
token_pattern='[a-zA-Z0-9]{3,}'
|
| 51 |
+
)
|
| 52 |
+
data_vectorized = vectorizer.fit_transform(data_lemmatized)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
lda_model = LatentDirichletAllocation(
|
| 56 |
+
n_components=5,
|
| 57 |
+
max_iter=10,
|
| 58 |
+
learning_method='online',
|
| 59 |
+
random_state=100,
|
| 60 |
+
batch_size=128,
|
| 61 |
+
evaluate_every = -1,
|
| 62 |
+
n_jobs = -1,
|
| 63 |
+
)
|
| 64 |
+
lda_output = lda_model.fit_transform(data_vectorized)
|
| 65 |
+
print(lda_model) # Model attributes
|
| 66 |
+
|
| 67 |
+
# Log Likelyhood: Higher the better
|
| 68 |
+
print("Log Likelihood: ", lda_model.score(data_vectorized))
|
| 69 |
+
# Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word)
|
| 70 |
+
print("Perplexity: ", lda_model.perplexity(data_vectorized))
|
| 71 |
+
# See model parameters
|
| 72 |
+
pprint(lda_model.get_params())
|
| 73 |
+
|
| 74 |
+
best_lda_model = lda_model
|
| 75 |
+
|
| 76 |
+
lda_output = best_lda_model.transform(data_vectorized)
|
| 77 |
+
|
| 78 |
+
topicnames = ["Topic" + str(i) for i in range(best_lda_model.n_components)]
|
| 79 |
+
docnames = ["Doc" + str(i) for i in range(len(data))]
|
| 80 |
+
df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames, index=docnames)
|
| 81 |
+
|
| 82 |
+
dominant_topic = np.argmax(df_document_topic.values, axis=1)
|
| 83 |
+
df_document_topic["dominant_topic"] = dominant_topic
|
| 84 |
+
|
| 85 |
+
# Topic-Keyword Matrix
|
| 86 |
+
df_topic_keywords = pd.DataFrame(best_lda_model.components_)
|
| 87 |
+
df_topic_keywords
|
| 88 |
+
# Assign Column and Index
|
| 89 |
+
df_topic_keywords.columns = vectorizer.get_feature_names_out()
|
| 90 |
+
df_topic_keywords.index = topicnames
|
| 91 |
+
# View
|
| 92 |
+
df_topic_keywords
|
| 93 |
+
|
| 94 |
+
# Show top n keywords for each topic
|
| 95 |
+
def show_topics(vectorizer=vectorizer, lda_model=lda_model, n_words=20):
|
| 96 |
+
keywords = np.array(vectorizer.get_feature_names_out())
|
| 97 |
+
topic_keywords = []
|
| 98 |
+
for topic_weights in lda_model.components_:
|
| 99 |
+
top_keyword_locs = (-topic_weights).argsort()[:n_words]
|
| 100 |
+
topic_keywords.append(keywords.take(top_keyword_locs))
|
| 101 |
+
return topic_keywords
|
| 102 |
+
topic_keywords = show_topics(vectorizer=vectorizer, lda_model=best_lda_model, n_words=15)
|
| 103 |
+
# Topic - Keywords Dataframe
|
| 104 |
+
df_topic_keywords = pd.DataFrame(topic_keywords)
|
| 105 |
+
df_topic_keywords.columns = ['Word '+str(i) for i in range(df_topic_keywords.shape[1])]
|
| 106 |
+
df_topic_keywords.index = ['Topic '+str(i) for i in range(df_topic_keywords.shape[0])]
|
| 107 |
+
df_topic_keywords
|
| 108 |
+
|
| 109 |
+
topics = [
|
| 110 |
+
f'Topic {i}' for i in range(len(df_topic_keywords))
|
| 111 |
+
]
|
| 112 |
+
df_topic_keywords["Topics"] = topics
|
| 113 |
+
df_topic_keywords
|
| 114 |
+
|
| 115 |
+
# # Define function to predict topic for a given text document.
|
| 116 |
+
# nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner'])
|
| 117 |
+
# def predict_topic(text, nlp=nlp):
|
| 118 |
+
# global sent_to_words
|
| 119 |
+
# global lemmatization
|
| 120 |
+
# # Step 1: Clean with simple_preprocess
|
| 121 |
+
# mytext_2 = list(sent_to_words(text))
|
| 122 |
+
# # Step 2: Lemmatize
|
| 123 |
+
# mytext_3 = lemmatization(mytext_2, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV'])
|
| 124 |
+
# # Step 3: Vectorize transform
|
| 125 |
+
# mytext_4 = vectorizer.transform(mytext_3)
|
| 126 |
+
# # Step 4: LDA Transform
|
| 127 |
+
# topic_probability_scores = best_lda_model.transform(mytext_4)
|
| 128 |
+
# topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), 1:14].values.tolist()
|
| 129 |
+
|
| 130 |
+
# # Step 5: Infer Topic
|
| 131 |
+
# infer_topic = df_topic_keywords.iloc[np.argmax(topic_probability_scores), -1]
|
| 132 |
+
|
| 133 |
+
# #topic_guess = df_topic_keywords.iloc[np.argmax(topic_probability_scores), Topics]
|
| 134 |
+
# return infer_topic, topic, topic_probability_scores
|
| 135 |
+
|
| 136 |
+
# # Predict the topic
|
| 137 |
+
# mytext = ["This is a test of a random topic where I talk about politics"]
|
| 138 |
+
# infer_topic, topic, prob_scores = predict_topic(text = mytext)
|
| 139 |
+
|
| 140 |
+
def apply_predict_topic(text):
|
| 141 |
+
text = [text]
|
| 142 |
+
infer_topic, topic, prob_scores = predict_topic(text = text)
|
| 143 |
+
return(infer_topic)
|
| 144 |
+
|
| 145 |
+
df["Topic_key_word"] = df['comment'].apply(apply_predict_topic)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# plot
|
| 149 |
subreddits = df.subreddit.value_counts().index[:22]
|
| 150 |
|
| 151 |
weight_counts = {
|
|
|
|
| 180 |
ax.legend(loc="upper right")
|
| 181 |
plt.xticks(rotation=70)
|
| 182 |
|
| 183 |
+
return fig
|
| 184 |
|
| 185 |
|
| 186 |
with gr.Blocks() as demo:
|
|
|
|
| 188 |
label="Plot type",
|
| 189 |
choices=['scatter_plot', 'heatmap', 'us_map', 'interactive_barplot', "radial", "multiline"], value='scatter_plot'
|
| 190 |
)
|
| 191 |
+
choose_context = gr.Radio(
|
| 192 |
label="Context LDA",
|
| 193 |
+
choices=['comment', 'sup comment', 'sup comment + comment'], value='sup comment'
|
| 194 |
)
|
| 195 |
plot = gr.Plot(label="Plot")
|
| 196 |
+
button.change(main, inputs=[button, choose_context], outputs=[plot])
|
| 197 |
demo.load(main, inputs=[button], outputs=[plot])
|
| 198 |
|
| 199 |
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
nltk
|
| 2 |
spacy
|
| 3 |
gensim
|
| 4 |
-
|
|
|
|
| 1 |
nltk
|
| 2 |
spacy
|
| 3 |
gensim
|
| 4 |
+
scikit-learn
|