import pickle import faiss import numpy as np # from grammar import remove_verbs, clean_text from utils import * from sentence_transformers import SentenceTransformer class FAISS: def __init__(self, dimensions: int): self.dimensions = dimensions self.index = faiss.IndexFlatL2(dimensions) self.vectors = {} self.counter = 0 self.model_name = 'paraphrase-multilingual-MiniLM-L12-v2' self.sentence_encoder = SentenceTransformer(self.model_name) def init_vectors(self, path): with open(path, 'rb') as pkl_file: self.vectors = pickle.load(pkl_file) def init_index(self, path): self.index = faiss.read_index(path) def add(self, text, idx, pop, emb=None): if emb is None: text_vec = self.sentence_encoder.encode([text]) else: text_vec = emb self.index.add(text_vec) self.vectors[self.counter] = (idx, text, pop, text_vec) self.counter += 1 def search(self, v: list, k: int = 10): result = [] distance, item_index = self.index.search(v, k) for dist, i in zip(distance[0], item_index[0]): if i == -1: break else: result.append((self.vectors[i][0], self.vectors[i][1], self.vectors[i][2], dist)) return result def suggest_tags(self, query, top_n=10, k=30) -> list: emb = self.sentence_encoder.encode([query.lower()]) r = self.search(emb, k) result = [] for i in r: if check(query, i[1]): result.append(i) # надо добавить вес относительно длины result = sorted(result, key=lambda x: x[0] * 0.3 - x[-1], reverse=True) total_result = [] for i in range(len(result)): flag = True for j in result[i + 1:]: flag &= sweet_check(result[i][1], j[1]) if flag: total_result.append(result[i][1]) return total_result[:top_n]