|
import random |
|
import json |
|
|
|
import torch |
|
|
|
from model import NeuralNet |
|
from nltk_utils import bag_of_words, tokenize |
|
|
|
|
|
samples = "" |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
with open('intents.json', 'r') as json_data: |
|
intents = json.load(json_data) |
|
|
|
FILE = "data.pth" |
|
data = torch.load(FILE) |
|
|
|
input_size = data["input_size"] |
|
hidden_size = data["hidden_size"] |
|
output_size = data["output_size"] |
|
all_words = data['all_words'] |
|
tags = data['tags'] |
|
model_state = data["model_state"] |
|
|
|
model = NeuralNet(input_size, hidden_size, output_size).to(device) |
|
model.load_state_dict(model_state) |
|
model.eval() |
|
|
|
bot_name = "chatgpt prompt bot" |
|
|
|
|
|
def get_response(msg): |
|
sentence = tokenize(msg) |
|
X = bag_of_words(sentence, all_words) |
|
X = X.reshape(1, X.shape[0]) |
|
X = torch.from_numpy(X).to(device) |
|
|
|
output = model(X) |
|
_, predicted = torch.max(output, dim=1) |
|
|
|
tag = tags[predicted.item()] |
|
|
|
probs = torch.softmax(output, dim=1) |
|
prob = probs[0][predicted.item()] |
|
if prob.item() > 0.85: |
|
for intent in intents['intents']: |
|
if tag == intent["tag"]: |
|
return random.choice(intent['responses']) |
|
|
|
return f"I'm sorry, but I cannot understand your query. {samples} " |
|
|
|
|
|
if __name__ == "__main__": |
|
print("Please enter options (type 'quit' to exit)") |
|
while True: |
|
|
|
sentence = input("You: ") |
|
if sentence == "quit": |
|
break |
|
|
|
resp = get_response(sentence) |
|
print(resp) |
|
|
|
|