File size: 25,969 Bytes
ce4dba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Object Detection App</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"></script>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/[email protected]/dist/coco-ssd.min.js"></script>
    <style>
        .video-container {
            position: relative;
            display: inline-block;
        }
        .canvas-overlay {
            position: absolute;
            top: 0;
            left: 0;
            pointer-events: none;
        }
        .detection-box {
            position: absolute;
            border: 2px solid;
            display: flex;
            flex-direction: column;
            align-items: center;
            justify-content: flex-end;
        }
        .detection-label {
            background-color: rgba(0, 0, 0, 0.7);
            color: white;
            padding: 2px 5px;
            font-size: 12px;
            border-radius: 4px;
            margin-bottom: 2px;
        }
        .loading-bar {
            width: 100%;
            height: 4px;
            background-color: #e5e7eb;
            border-radius: 2px;
            overflow: hidden;
        }
        .loading-progress {
            height: 100%;
            background-color: #3b82f6;
            transition: width 0.3s ease;
        }
        .toggle-switch {
            position: relative;
            display: inline-block;
            width: 60px;
            height: 34px;
        }
        .toggle-switch input {
            opacity: 0;
            width: 0;
            height: 0;
        }
        .slider {
            position: absolute;
            cursor: pointer;
            top: 0;
            left: 0;
            right: 0;
            bottom: 0;
            background-color: #ccc;
            transition: .4s;
            border-radius: 34px;
        }
        .slider:before {
            position: absolute;
            content: "";
            height: 26px;
            width: 26px;
            left: 4px;
            bottom: 4px;
            background-color: white;
            transition: .4s;
            border-radius: 50%;
        }
        input:checked + .slider {
            background-color: #3b82f6;
        }
        input:checked + .slider:before {
            transform: translateX(26px);
        }
    </style>
</head>
<body class="bg-gray-100 min-h-screen">
    <div class="container mx-auto px-4 py-8">
        <div class="max-w-4xl mx-auto bg-white rounded-xl shadow-md overflow-hidden">
            <div class="p-6">
                <h1 class="text-3xl font-bold text-gray-800 mb-2">Object Detection App</h1>
                <p class="text-gray-600 mb-6">Detect and label man-made objects using your camera or a video URL</p>
                
                <div class="flex flex-col md:flex-row gap-6 mb-6">
                    <div class="flex-1">
                        <div class="mb-4">
                            <label class="block text-gray-700 font-medium mb-2" for="source-select">Detection Source</label>
                            <select id="source-select" class="w-full px-4 py-2 border border-gray-300 rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500">
                                <option value="camera">Camera</option>
                                <option value="video-url">Video URL</option>
                                <option value="file-upload">Upload Video</option>
                            </select>
                        </div>
                        
                        <div id="camera-controls" class="space-y-4">
                            <div class="flex items-center space-x-4">
                                <button id="start-camera" class="px-4 py-2 bg-blue-600 text-white rounded-lg hover:bg-blue-700 transition">Start Camera</button>
                                <button id="stop-camera" class="px-4 py-2 bg-gray-600 text-white rounded-lg hover:bg-gray-700 transition" disabled>Stop Camera</button>
                            </div>
                            <div class="flex items-center space-x-4">
                                <span class="text-gray-700">Show labels:</span>
                                <label class="toggle-switch">
                                    <input type="checkbox" id="show-labels" checked>
                                    <span class="slider"></span>
                                </label>
                            </div>
                        </div>
                        
                        <div id="video-url-controls" class="hidden space-y-4">
                            <div class="mb-4">
                                <label class="block text-gray-700 font-medium mb-2" for="video-url">Video URL</label>
                                <input type="text" id="video-url" placeholder="https://example.com/video.mp4" class="w-full px-4 py-2 border border-gray-300 rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500">
                            </div>
                            <button id="load-video" class="px-4 py-2 bg-blue-600 text-white rounded-lg hover:bg-blue-700 transition">Load Video</button>
                        </div>
                        
                        <div id="file-upload-controls" class="hidden space-y-4">
                            <div class="mb-4">
                                <label class="block text-gray-700 font-medium mb-2" for="video-upload">Upload Video</label>
                                <input type="file" id="video-upload" accept="video/*" class="w-full px-4 py-2 border border-gray-300 rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500">
                            </div>
                        </div>
                    </div>
                    
                    <div class="flex-1">
                        <div class="bg-gray-200 rounded-lg p-4">
                            <h2 class="text-xl font-semibold text-gray-800 mb-2">Detection Settings</h2>
                            <div class="space-y-4">
                                <div>
                                    <label class="block text-gray-700 font-medium mb-2">Confidence Threshold</label>
                                    <input type="range" id="confidence-slider" min="0" max="1" step="0.05" value="0.5" class="w-full">
                                    <div class="flex justify-between text-sm text-gray-600">
                                        <span>0%</span>
                                        <span id="confidence-value">50%</span>
                                        <span>100%</span>
                                    </div>
                                </div>
                                <div>
                                    <label class="block text-gray-700 font-medium mb-2">Detection Speed</label>
                                    <select id="speed-select" class="w-full px-4 py-2 border border-gray-300 rounded-lg focus:outline-none focus:ring-2 focus:ring-blue-500">
                                        <option value="fast">Fast (less accurate)</option>
                                        <option value="medium" selected>Medium</option>
                                        <option value="slow">Slow (more accurate)</option>
                                    </select>
                                </div>
                            </div>
                        </div>
                    </div>
                </div>
                
                <div class="mb-6">
                    <div class="loading-bar mb-2 hidden" id="model-loading-bar">
                        <div class="loading-progress" id="model-loading-progress" style="width: 0%"></div>
                    </div>
                    <p class="text-sm text-gray-600" id="status-message">Click "Start Camera" or load a video to begin detection</p>
                </div>
                
                <div class="video-container mx-auto">
                    <video id="video" autoplay playsinline muted class="w-full max-h-[500px] bg-gray-900 rounded-lg hidden"></video>
                    <canvas id="canvas" class="canvas-overlay"></canvas>
                </div>
                
                <div class="mt-6 hidden" id="results-container">
                    <h2 class="text-xl font-semibold text-gray-800 mb-2">Detection Results</h2>
                    <div class="bg-gray-100 rounded-lg p-4">
                        <div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-4" id="detection-results">
                            <!-- Detection results will be added here -->
                        </div>
                    </div>
                </div>
            </div>
        </div>
    </div>

    <script>
        // DOM elements
        const sourceSelect = document.getElementById('source-select');
        const cameraControls = document.getElementById('camera-controls');
        const videoUrlControls = document.getElementById('video-url-controls');
        const fileUploadControls = document.getElementById('file-upload-controls');
        const startCameraBtn = document.getElementById('start-camera');
        const stopCameraBtn = document.getElementById('stop-camera');
        const loadVideoBtn = document.getElementById('load-video');
        const videoUrlInput = document.getElementById('video-url');
        const videoUploadInput = document.getElementById('video-upload');
        const videoElement = document.getElementById('video');
        const canvasElement = document.getElementById('canvas');
        const confidenceSlider = document.getElementById('confidence-slider');
        const confidenceValue = document.getElementById('confidence-value');
        const speedSelect = document.getElementById('speed-select');
        const showLabelsToggle = document.getElementById('show-labels');
        const statusMessage = document.getElementById('status-message');
        const modelLoadingBar = document.getElementById('model-loading-bar');
        const modelLoadingProgress = document.getElementById('model-loading-progress');
        const resultsContainer = document.getElementById('results-container');
        const detectionResults = document.getElementById('detection-results');
        
        // App state
        let model = null;
        let isDetecting = false;
        let detectionInterval = null;
        let stream = null;
        let showLabels = true;
        let confidenceThreshold = 0.5;
        let detectionSpeed = 'medium';
        
        // Initialize the app
        init();
        
        function init() {
            // Event listeners
            sourceSelect.addEventListener('change', handleSourceChange);
            startCameraBtn.addEventListener('click', startCamera);
            stopCameraBtn.addEventListener('click', stopCamera);
            loadVideoBtn.addEventListener('click', loadVideoFromUrl);
            videoUploadInput.addEventListener('change', handleVideoUpload);
            confidenceSlider.addEventListener('input', updateConfidenceThreshold);
            speedSelect.addEventListener('change', updateDetectionSpeed);
            showLabelsToggle.addEventListener('change', toggleLabels);
            
            // Set canvas size to match video when it loads
            videoElement.addEventListener('loadedmetadata', () => {
                canvasElement.width = videoElement.videoWidth;
                canvasElement.height = videoElement.videoHeight;
            });
            
            // Load the model
            loadModel();
        }
        
        function handleSourceChange() {
            const source = sourceSelect.value;
            
            // Hide all controls
            cameraControls.classList.add('hidden');
            videoUrlControls.classList.add('hidden');
            fileUploadControls.classList.add('hidden');
            
            // Show the appropriate controls
            if (source === 'camera') {
                cameraControls.classList.remove('hidden');
            } else if (source === 'video-url') {
                videoUrlControls.classList.remove('hidden');
            } else if (source === 'file-upload') {
                fileUploadControls.classList.remove('hidden');
            }
            
            // Stop any ongoing detection
            stopDetection();
        }
        
        async function loadModel() {
            try {
                modelLoadingBar.classList.remove('hidden');
                modelLoadingProgress.style.width = '10%';
                statusMessage.textContent = 'Loading object detection model...';
                
                // Simulate progress for demo purposes
                const progressInterval = setInterval(() => {
                    const currentWidth = parseInt(modelLoadingProgress.style.width);
                    if (currentWidth < 90) {
                        modelLoadingProgress.style.width = `${currentWidth + 10}%`;
                    }
                }, 300);
                
                // Load the COCO-SSD model
                model = await cocoSsd.load({
                    base: speedSelect.value === 'fast' ? 'mobilenet_v1' : 
                          speedSelect.value === 'slow' ? 'resnet50' : 'lite_mobilenet_v2'
                });
                
                clearInterval(progressInterval);
                modelLoadingProgress.style.width = '100%';
                statusMessage.textContent = 'Model loaded successfully!';
                
                setTimeout(() => {
                    modelLoadingBar.classList.add('hidden');
                }, 1000);
            } catch (error) {
                console.error('Error loading model:', error);
                statusMessage.textContent = 'Failed to load model. Please refresh the page.';
                modelLoadingBar.classList.add('hidden');
            }
        }
        
        async function startCamera() {
            try {
                statusMessage.textContent = 'Accessing camera...';
                stream = await navigator.mediaDevices.getUserMedia({ video: true });
                videoElement.srcObject = stream;
                videoElement.classList.remove('hidden');
                
                startCameraBtn.disabled = true;
                stopCameraBtn.disabled = false;
                
                statusMessage.textContent = 'Camera started. Detecting objects...';
                
                // Start detection
                startDetection();
            } catch (error) {
                console.error('Error accessing camera:', error);
                statusMessage.textContent = 'Could not access camera. Please check permissions.';
            }
        }
        
        function stopCamera() {
            if (stream) {
                stream.getTracks().forEach(track => track.stop());
                stream = null;
            }
            
            videoElement.srcObject = null;
            videoElement.classList.add('hidden');
            
            startCameraBtn.disabled = false;
            stopCameraBtn.disabled = true;
            
            // Stop detection
            stopDetection();
            
            statusMessage.textContent = 'Camera stopped.';
        }
        
        function loadVideoFromUrl() {
            const videoUrl = videoUrlInput.value.trim();
            
            if (!videoUrl) {
                statusMessage.textContent = 'Please enter a valid video URL.';
                return;
            }
            
            stopDetection();
            
            videoElement.src = videoUrl;
            videoElement.classList.remove('hidden');
            
            statusMessage.textContent = 'Loading video...';
            
            videoElement.onerror = () => {
                statusMessage.textContent = 'Failed to load video. Please check the URL.';
            };
            
            videoElement.onloadeddata = () => {
                statusMessage.textContent = 'Video loaded. Detecting objects...';
                startDetection();
            };
        }
        
        function handleVideoUpload(event) {
            const file = event.target.files[0];
            
            if (!file) return;
            
            stopDetection();
            
            const videoURL = URL.createObjectURL(file);
            videoElement.src = videoURL;
            videoElement.classList.remove('hidden');
            
            statusMessage.textContent = 'Loading video...';
            
            videoElement.onloadeddata = () => {
                statusMessage.textContent = 'Video loaded. Detecting objects...';
                startDetection();
            };
        }
        
        function startDetection() {
            if (!model) {
                statusMessage.textContent = 'Model not loaded yet. Please wait...';
                return;
            }
            
            if (isDetecting) return;
            
            isDetecting = true;
            
            // Clear previous results
            detectionResults.innerHTML = '';
            resultsContainer.classList.remove('hidden');
            
            // Start detecting objects in the video
            detectObjects();
            
            // Set up interval for continuous detection
            const interval = detectionSpeed === 'fast' ? 300 : 
                           detectionSpeed === 'slow' ? 1000 : 500;
            
            detectionInterval = setInterval(detectObjects, interval);
        }
        
        function stopDetection() {
            if (detectionInterval) {
                clearInterval(detectionInterval);
                detectionInterval = null;
            }
            
            isDetecting = false;
            
            // Clear canvas
            const ctx = canvasElement.getContext('2d');
            ctx.clearRect(0, 0, canvasElement.width, canvasElement.height);
        }
        
        async function detectObjects() {
            if (!isDetecting || videoElement.readyState < 2) return;
            
            try {
                // Get predictions from the model
                const predictions = await model.detect(videoElement);
                
                // Filter predictions based on confidence threshold
                const filteredPredictions = predictions.filter(
                    pred => pred.score >= confidenceThreshold
                );
                
                // Filter for man-made objects (you can expand this list)
                const manMadeObjects = filteredPredictions.filter(pred => {
                    const objectClass = pred.class.toLowerCase();
                    return [
                        'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 
                        'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 
                        'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 
                        'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 
                        'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 
                        'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 
                        'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 
                        'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 
                        'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 
                        'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 
                        'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 
                        'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 
                        'scissors', 'teddy bear', 'hair drier', 'toothbrush'
                    ].includes(objectClass);
                });
                
                // Draw bounding boxes and labels
                drawDetections(manMadeObjects);
                
                // Update results display
                updateResultsDisplay(manMadeObjects);
                
            } catch (error) {
                console.error('Error detecting objects:', error);
                statusMessage.textContent = 'Error detecting objects.';
            }
        }
        
        function drawDetections(predictions) {
            const ctx = canvasElement.getContext('2d');
            ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
            
            // Font settings
            const font = "16px sans-serif";
            ctx.font = font;
            ctx.textBaseline = "top";
            
            predictions.forEach(prediction => {
                // Draw bounding box
                const [x, y, width, height] = prediction.bbox;
                ctx.strokeStyle = "#00FFFF";
                ctx.lineWidth = 2;
                ctx.strokeRect(x, y, width, height);
                
                if (showLabels) {
                    // Draw label background
                    const text = `${prediction.class} ${(prediction.score * 100).toFixed(1)}%`;
                    const textWidth = ctx.measureText(text).width;
                    const textHeight = parseInt(font, 10);
                    
                    ctx.fillStyle = "rgba(0, 0, 0, 0.7)";
                    ctx.fillRect(x, y, textWidth + 4, textHeight + 4);
                    
                    // Draw text
                    ctx.fillStyle = "#FFFFFF";
                    ctx.fillText(text, x, y);
                }
            });
        }
        
        function updateResultsDisplay(predictions) {
            // Clear previous results
            detectionResults.innerHTML = '';
            
            // Group predictions by class and count them
            const objectCounts = {};
            predictions.forEach(pred => {
                if (!objectCounts[pred.class]) {
                    objectCounts[pred.class] = 0;
                }
                objectCounts[pred.class]++;
            });
            
            // Sort by count (descending)
            const sortedClasses = Object.keys(objectCounts).sort(
                (a, b) => objectCounts[b] - objectCounts[a]
            );
            
            // Create cards for each detected object class
            sortedClasses.forEach(className => {
                const count = objectCounts[className];
                
                const card = document.createElement('div');
                card.className = 'bg-white rounded-lg shadow p-4 flex items-center';
                
                // You could add icons for common objects here
                const icon = document.createElement('div');
                icon.className = 'w-10 h-10 rounded-full bg-blue-100 flex items-center justify-center mr-4';
                icon.innerHTML = `<span class="text-blue-600 font-bold">${count}</span>`;
                
                const content = document.createElement('div');
                content.className = 'flex-1';
                
                const title = document.createElement('h3');
                title.className = 'font-semibold text-gray-800 capitalize';
                title.textContent = className;
                
                const countText = document.createElement('p');
                countText.className = 'text-sm text-gray-600';
                countText.textContent = `${count} detected`;
                
                content.appendChild(title);
                content.appendChild(countText);
                
                card.appendChild(icon);
                card.appendChild(content);
                
                detectionResults.appendChild(card);
            });
            
            // Show message if no objects detected
            if (sortedClasses.length === 0) {
                const message = document.createElement('div');
                message.className = 'col-span-3 text-center py-8 text-gray-500';
                message.textContent = 'No man-made objects detected. Try adjusting the confidence threshold.';
                detectionResults.appendChild(message);
            }
        }
        
        function updateConfidenceThreshold() {
            confidenceThreshold = parseFloat(confidenceSlider.value);
            confidenceValue.textContent = `${Math.round(confidenceThreshold * 100)}%`;
        }
        
        function updateDetectionSpeed() {
            detectionSpeed = speedSelect.value;
            
            // If detection is running, restart with new speed
            if (isDetecting) {
                stopDetection();
                startDetection();
            }
        }
        
        function toggleLabels() {
            showLabels = showLabelsToggle.checked;
        }
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=Danyray101/objdetect" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html>