Spaces:
Sleeping
Sleeping
File size: 4,286 Bytes
887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e 8bc6aeb 4ca555a 8bc6aeb 887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e 4ca555a 887b79e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import streamlit as st
from dotenv import load_dotenv
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile
import os
def get_pdf_text(pdf_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
with open(temp_filepath, "wb") as f:
f.write(pdf_docs.getvalue())
pdf_loader = PyPDFLoader(temp_filepath)
pdf_doc = pdf_loader.load()
return pdf_doc
def get_text_file(docs):
text_loader = TextLoader(docs.name)
text = text_loader.load()
return [text]
def get_csv_file(docs):
csv_loader = CSVLoader(docs.name)
csv_text = csv_loader.load()
return csv_text.values.tolist()
def get_json_file(docs):
json_loader = JSONLoader(docs.name)
json_text = json_loader.load()
return [json_text]
def get_text_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
return documents
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(text_chunks, embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
gpt_model_name = 'gpt-3.5-turbo'
llm = ChatOpenAI(model_name=gpt_model_name)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple Files",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple Files :")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
openai_key = st.text_input("Paste your OpenAI API key (sk-...)")
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
st.subheader("Your documents")
docs = st.file_uploader(
"Upload your files here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
doc_list = []
for file in docs:
if file.type == 'text/plain':
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
doc_list.extend(get_csv_file(file))
elif file.type == 'application/json':
doc_list.extend(get_json_file(file))
text_chunks = get_text_chunks(doc_list)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()
|