Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,28 +2,28 @@
|
|
2 |
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
-
import soundfile as sf
|
6 |
import numpy as np
|
|
|
7 |
|
8 |
# --- EDIT THIS: map display names to your HF Hub model IDs ---
|
9 |
language_models = {
|
10 |
-
"Akan (Asanti Twi)":
|
11 |
-
"Ewe":
|
12 |
-
"Kiswahili":
|
13 |
-
"Luganda":
|
14 |
-
"Brazilian Portuguese":
|
15 |
-
"Fante Kissi":"misterkissi/w2v2-lg-xls-r-300m-fante",
|
16 |
-
"Runyankore Kissi":"misterkissi/w2v2-lg-xls-r-300m-runyankore",
|
17 |
# add more as needed
|
18 |
}
|
19 |
|
20 |
-
# Pre-load pipelines for each language
|
21 |
asr_pipelines = {
|
22 |
lang: pipeline(
|
23 |
task="automatic-speech-recognition",
|
24 |
model=model_id,
|
25 |
-
|
26 |
-
chunk_length_s=30
|
27 |
)
|
28 |
for lang, model_id in language_models.items()
|
29 |
}
|
@@ -31,18 +31,16 @@ asr_pipelines = {
|
|
31 |
|
32 |
def transcribe(audio_path: str, language: str) -> str:
|
33 |
"""
|
34 |
-
Load the audio
|
35 |
-
|
36 |
"""
|
37 |
-
if audio_path
|
38 |
return "⚠️ Please upload or record an audio clip."
|
39 |
|
40 |
-
#
|
41 |
-
speech, sr =
|
42 |
-
# Stereo → mono
|
43 |
-
if speech.ndim > 1:
|
44 |
-
speech = np.mean(speech, axis=1)
|
45 |
|
|
|
46 |
result = asr_pipelines[language]({
|
47 |
"sampling_rate": sr,
|
48 |
"raw": speech
|
@@ -54,7 +52,8 @@ with gr.Blocks(title="🌐 Multilingual ASR Demo") as demo:
|
|
54 |
gr.Markdown(
|
55 |
"""
|
56 |
## 🎙️ Multilingual Speech-to-Text
|
57 |
-
Upload an audio file
|
|
|
58 |
"""
|
59 |
)
|
60 |
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
|
|
5 |
import numpy as np
|
6 |
+
import librosa # pip install librosa
|
7 |
|
8 |
# --- EDIT THIS: map display names to your HF Hub model IDs ---
|
9 |
language_models = {
|
10 |
+
"Akan (Asanti Twi)": "FarmerlineML/w2v-bert-2.0_twi_alpha_v1",
|
11 |
+
"Ewe": "FarmerlineML/w2v-bert-2.0_ewe_2",
|
12 |
+
"Kiswahili": "FarmerlineML/w2v-bert-2.0_swahili_alpha",
|
13 |
+
"Luganda": "FarmerlineML/w2v-bert-2.0_luganda",
|
14 |
+
"Brazilian Portuguese": "FarmerlineML/w2v-bert-2.0_brazilian_portugese_alpha",
|
15 |
+
"Fante Kissi": "misterkissi/w2v2-lg-xls-r-300m-fante",
|
16 |
+
"Runyankore Kissi": "misterkissi/w2v2-lg-xls-r-300m-runyankore",
|
17 |
# add more as needed
|
18 |
}
|
19 |
|
20 |
+
# Pre-load pipelines for each language on CPU (device=-1)
|
21 |
asr_pipelines = {
|
22 |
lang: pipeline(
|
23 |
task="automatic-speech-recognition",
|
24 |
model=model_id,
|
25 |
+
device=-1, # force CPU usage
|
26 |
+
chunk_length_s=30
|
27 |
)
|
28 |
for lang, model_id in language_models.items()
|
29 |
}
|
|
|
31 |
|
32 |
def transcribe(audio_path: str, language: str) -> str:
|
33 |
"""
|
34 |
+
Load the audio via librosa (supports mp3, wav, flac, m4a, ogg, etc.),
|
35 |
+
convert to mono, then run it through the chosen ASR pipeline.
|
36 |
"""
|
37 |
+
if not audio_path:
|
38 |
return "⚠️ Please upload or record an audio clip."
|
39 |
|
40 |
+
# librosa.load returns a 1D np.ndarray (mono) and the sample rate
|
41 |
+
speech, sr = librosa.load(audio_path, sr=None, mono=True)
|
|
|
|
|
|
|
42 |
|
43 |
+
# Call the Hugging Face ASR pipeline
|
44 |
result = asr_pipelines[language]({
|
45 |
"sampling_rate": sr,
|
46 |
"raw": speech
|
|
|
52 |
gr.Markdown(
|
53 |
"""
|
54 |
## 🎙️ Multilingual Speech-to-Text
|
55 |
+
Upload an audio file (MP3, WAV, FLAC, M4A, OGG,…) or record via your microphone.
|
56 |
+
Then choose the language/model and hit **Transcribe**.
|
57 |
"""
|
58 |
)
|
59 |
|