File size: 14,302 Bytes
ddf6cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# app.py

import os
import csv
import json
import time
import uuid
import gradio as gr
from transformers import pipeline
import numpy as np
import librosa  # pip install librosa

# Optional but recommended for better jiwer performance
# pip install python-Levenshtein
try:
    from jiwer import compute_measures, wer as jiwer_wer, cer as jiwer_cer
    HAS_JIWER = True
except Exception:
    HAS_JIWER = False

# -------- CONFIG: storage paths (Space-friendly) --------
DATA_DIR = "/home/user/data"
AUDIO_DIR = os.path.join(DATA_DIR, "audio")
LOG_CSV = os.path.join(DATA_DIR, "logs.csv")
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(AUDIO_DIR, exist_ok=True)

# --- EDIT THIS: map display names to your HF Hub model IDs ---
language_models = {
    "Akan (Asante Twi)":        "FarmerlineML/w2v-bert-2.0_twi_alpha_v1",
    "Ewe":                      "FarmerlineML/w2v-bert-2.0_ewe_2",
    "Kiswahili":                "FarmerlineML/w2v-bert-2.0_swahili_alpha",
    "Luganda":                  "FarmerlineML/w2v-bert-2.0_luganda",
    "Brazilian Portuguese":     "FarmerlineML/w2v-bert-2.0_brazilian_portugese_alpha",
    "Fante":                    "misterkissi/w2v2-lg-xls-r-300m-fante", 
    "Bemba":                    "DarliAI/kissi-w2v2-lg-xls-r-300m-bemba",
    "Bambara":                  "DarliAI/kissi-w2v2-lg-xls-r-300m-bambara",
    "Dagaare":                  "DarliAI/kissi-w2v2-lg-xls-r-300m-dagaare",
    "Kinyarwanda":              "DarliAI/kissi-w2v2-lg-xls-r-300m-kinyarwanda",
    "Fula":                     "DarliAI/kissi-wav2vec2-fula-fleurs-full",
    "Oromo":                    "DarliAI/kissi-w2v-bert-2.0-oromo",
    "Runynakore":               "misterkissi/w2v2-lg-xls-r-300m-runyankore",
    "Ga":                       "misterkissi/w2v2-lg-xls-r-300m-ga",
    "Vai":                      "misterkissi/whisper-small-vai",
    "Kasem":                    "misterkissi/w2v2-lg-xls-r-300m-kasem",
    "Lingala":                  "misterkissi/w2v2-lg-xls-r-300m-lingala",
    "Fongbe":                   "misterkissi/whisper-small-fongbe",
    "Amharic":                  "misterkissi/w2v2-lg-xls-r-1b-amharic",
    "Xhosa":                    "misterkissi/w2v2-lg-xls-r-300m-xhosa",
    "Tsonga":                   "misterkissi/w2v2-lg-xls-r-300m-tsonga",
    # "WOLOF":                  "misterkissi/w2v2-lg-xls-r-1b-wolof",
    # "HAITIAN CREOLE":         "misterkissi/whisper-small-haitian-creole",
    # "KABYLE":                 "misterkissi/w2v2-lg-xls-r-1b-kabyle",
    "Yoruba":                   "FarmerlineML/w2v-bert-2.0_yoruba_v1",
    "Luganda":                  "FarmerlineML/luganda_fkd",
    "Luo":                      "FarmerlineML/w2v-bert-2.0_luo_v2",
    "Somali":                   "FarmerlineML/w2v-bert-2.0_somali_alpha",
    "Pidgin":                   "FarmerlineML/pidgin_nigerian",
    "Kikuyu":                   "FarmerlineML/w2v-bert-2.0_kikuyu",
    "Igbo":                     "FarmerlineML/w2v-bert-2.0_igbo_v1",
    "Krio":                     "FarmerlineML/w2v-bert-2.0_krio_v3"
}

# -------- Lazy-load pipeline cache (Space-safe) --------
# Small LRU-style cache to avoid loading all models into RAM
_PIPELINE_CACHE = {}
_CACHE_ORDER = []  # keeps track of usage order
_CACHE_MAX_SIZE = 3  # adjust if you have more RAM

def _touch_cache(key):
    if key in _CACHE_ORDER:
        _CACHE_ORDER.remove(key)
    _CACHE_ORDER.insert(0, key)

def _evict_if_needed():
    while len(_PIPELINE_CACHE) > _CACHE_MAX_SIZE:
        oldest = _CACHE_ORDER.pop()  # least-recently used
        try:
            del _PIPELINE_CACHE[oldest]
        except KeyError:
            pass

def get_asr_pipeline(language_display: str):
    if language_display in _PIPELINE_CACHE:
        _touch_cache(language_display)
        return _PIPELINE_CACHE[language_display]
    model_id = language_models[language_display]
    pipe = pipeline(
        task="automatic-speech-recognition",
        model=model_id,
        device=-1,          # force CPU usage on Spaces CPU
        chunk_length_s=30
    )
    _PIPELINE_CACHE[language_display] = pipe
    _touch_cache(language_display)
    _evict_if_needed()
    return pipe

# -------- Helpers --------
def _model_revision_from_pipeline(pipe) -> str:
    # Best-effort capture of revision/hash for reproducibility
    for attr in ("hub_revision", "revision", "_commit_hash"):
        val = getattr(getattr(pipe, "model", None), attr, None)
        if val:
            return str(val)
    # Fallback to config name_or_path or unknown
    try:
        return str(getattr(pipe.model.config, "_name_or_path", "unknown"))
    except Exception:
        return "unknown"

def _append_log_row(row: dict):
    field_order = [
        "timestamp", "session_id",
        "language_display", "model_id", "model_revision",
        "audio_duration_s", "sample_rate", "source",
        "decode_params",
        "transcript_hyp",
        "reference_text", "corrected_text",
        "latency_ms", "rtf",
        "wer", "cer",
        "subs", "ins", "dels",
        "score_out_of_10", "feedback_text",
        "tags",
        "store_audio", "audio_path"
    ]
    file_exists = os.path.isfile(LOG_CSV)
    with open(LOG_CSV, "a", newline="", encoding="utf-8") as f:
        writer = csv.DictWriter(f, fieldnames=field_order)
        if not file_exists:
            writer.writeheader()
        # Ensure all fields exist
        for k in field_order:
            row.setdefault(k, "")
        writer.writerow(row)

def _compute_metrics(hyp: str, ref_or_corrected: str):
    if not HAS_JIWER or not ref_or_corrected or not hyp:
        return {
            "wer": None, "cer": None,
            "subs": None, "ins": None, "dels": None
        }
    try:
        measures = compute_measures(ref_or_corrected, hyp)
        return {
            "wer": measures.get("wer"),
            "cer": jiwer_cer(ref_or_corrected, hyp),
            "subs": measures.get("substitutions"),
            "ins": measures.get("insertions"),
            "dels": measures.get("deletions"),
        }
    except Exception:
        # Be resilient if jiwer errors on edge cases
        return {
            "wer": None, "cer": None,
            "subs": None, "ins": None, "dels": None
        }

# -------- Inference --------
def transcribe(audio_path: str, language: str):
    """
    Load the audio via librosa (supports mp3, wav, flac, m4a, ogg, etc.),
    convert to mono, then run it through the chosen ASR pipeline.
    Returns only the transcript (to keep existing behavior),
    while metadata is stored in a hidden state for the feedback step.
    """
    if not audio_path:
        return "⚠️ Please upload or record an audio clip.", None

    # librosa.load returns a 1D np.ndarray (mono) and the sample rate
    speech, sr = librosa.load(audio_path, sr=None, mono=True)
    duration_s = float(librosa.get_duration(y=speech, sr=sr))

    pipe = get_asr_pipeline(language)
    decode_params = {"chunk_length_s": getattr(pipe, "chunk_length_s", 30)}

    t0 = time.time()
    result = pipe({"sampling_rate": sr, "raw": speech})
    latency_ms = int((time.time() - t0) * 1000.0)
    hyp_text = result.get("text", "")

    rtf = (latency_ms / 1000.0) / max(duration_s, 1e-9)

    # Prepare metadata for the feedback logger
    meta = {
        "timestamp": time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()),
        "session_id": f"anon-{uuid.uuid4()}",
        "language_display": language,
        "model_id": language_models.get(language, "unknown"),
        "model_revision": _model_revision_from_pipeline(pipe),
        "audio_duration_s": duration_s,
        "sample_rate": sr,
        "source": "upload",  # gr.Audio combines both; we don't distinguish here
        "decode_params": json.dumps(decode_params),
        "transcript_hyp": hyp_text,
        "latency_ms": latency_ms,
        "rtf": rtf,
        # Placeholders to be filled on feedback submit
        "reference_text": "",
        "corrected_text": "",
        "wer": "",
        "cer": "",
        "subs": "",
        "ins": "",
        "dels": "",
        "score_out_of_10": "",
        "feedback_text": "",
        "tags": "",
        "store_audio": False,
        "audio_path": ""
    }

    return hyp_text, meta

# -------- Feedback submit --------
def submit_feedback(meta, reference_text, corrected_text, score, feedback_text,
                    tags, store_audio, share_publicly, audio_file_path):
    """
    Compute metrics (if possible), optionally store audio (consented),
    and append a row to CSV. Returns a compact dict for display.
    """
    if not meta:
        return {"status": "No transcription metadata available. Please transcribe first."}

    # Choose text to compare against hyp: prefer explicit reference, else corrected
    ref_for_metrics = reference_text.strip() if reference_text else ""
    corrected_text = corrected_text.strip() if corrected_text else ""
    if not ref_for_metrics and corrected_text:
        ref_for_metrics = corrected_text

    metrics = _compute_metrics(meta.get("transcript_hyp", ""), ref_for_metrics)

    # Handle audio storage (optional, consented)
    stored_path = ""
    if store_audio and audio_file_path:
        try:
            # Copy the original file to AUDIO_DIR with a random name
            ext = os.path.splitext(audio_file_path)[1] or ".wav"
            stored_path = os.path.join(AUDIO_DIR, f"{uuid.uuid4()}{ext}")
            # Simple byte copy
            with open(audio_file_path, "rb") as src, open(stored_path, "wb") as dst:
                dst.write(src.read())
        except Exception:
            stored_path = ""

    # Build log row
    row = dict(meta)  # start from recorded meta
    row.update({
        "reference_text": reference_text or "",
        "corrected_text": corrected_text or "",
        "wer": metrics["wer"] if metrics["wer"] is not None else "",
        "cer": metrics["cer"] if metrics["cer"] is not None else "",
        "subs": metrics["subs"] if metrics["subs"] is not None else "",
        "ins": metrics["ins"] if metrics["ins"] is not None else "",
        "dels": metrics["dels"] if metrics["dels"] is not None else "",
        "score_out_of_10": score if score is not None else "",
        "feedback_text": feedback_text or "",
        "tags": json.dumps({"labels": tags or [], "share_publicly": bool(share_publicly)}),
        "store_audio": bool(store_audio),
        "audio_path": stored_path
    })

    try:
        _append_log_row(row)
        status = "Feedback saved."
    except Exception as e:
        status = f"Failed to save feedback: {e}"

    # Compact result to show back to user
    return {
        "status": status,
        "wer": row["wer"] if row["wer"] != "" else None,
        "cer": row["cer"] if row["cer"] != "" else None,
        "subs": row["subs"] if row["subs"] != "" else None,
        "ins": row["ins"] if row["ins"] != "" else None,
        "dels": row["dels"] if row["dels"] != "" else None,
        "latency_ms": row["latency_ms"],
        "rtf": row["rtf"],
        "model_id": row["model_id"],
        "model_revision": row["model_revision"]
    }

# -------- UI (original preserved; additions appended) --------
with gr.Blocks(title="🌐 Multilingual ASR Demo") as demo:
    gr.Markdown(
        """
        ## 🎙️ Multilingual Speech-to-Text   
        Upload an audio file (MP3, WAV, FLAC, M4A, OGG,…) or record via your microphone.  
        Then choose the language/model and hit **Transcribe**.
        """
    )

    with gr.Row():
        lang = gr.Dropdown(
            choices=list(language_models.keys()),
            value=list(language_models.keys())[0],
            label="Select Language / Model"
        )

    with gr.Row():
        audio = gr.Audio(
            sources=["upload", "microphone"],
            type="filepath",
            label="Upload or Record Audio"
        )

    btn = gr.Button("Transcribe")
    output = gr.Textbox(label="Transcription")

    # Hidden state to carry metadata from transcribe -> feedback
    meta_state = gr.State(value=None)

    # Keep original behavior: output shows transcript
    # Also capture meta into the hidden state
    def _transcribe_and_store(audio_path, language):
        hyp, meta = transcribe(audio_path, language)
        # For convenience, populate corrected_text with the hyp by default
        return hyp, meta, hyp

    # --- Evaluation & Feedback (appended UI, no style/font changes) ---
    with gr.Accordion("Evaluation & Feedback", open=False):
        with gr.Row():
            reference_tb = gr.Textbox(label="Reference text (optional)", lines=4, value="")
        with gr.Row():
            corrected_tb = gr.Textbox(label="Corrected transcript (optional)", lines=4, value="")
        with gr.Row():
            score_slider = gr.Slider(minimum=0, maximum=10, step=1, label="Score out of 10", value=7)
        with gr.Row():
            feedback_tb = gr.Textbox(label="Feedback (what went right/wrong?)", lines=3, value="")
        with gr.Row():
            tags_cb = gr.CheckboxGroup(
                ["noisy", "far-field", "code-switching", "numbers-heavy", "named-entities", "read-speech", "spontaneous", "call-center", "voicenote"],
                label="Slice tags (select any that apply)"
            )
        with gr.Row():
            store_audio_cb = gr.Checkbox(label="Allow storing my audio for research/eval", value=False)
            share_cb = gr.Checkbox(label="Allow sharing this example publicly", value=False)

        submit_btn = gr.Button("Submit Feedback / Compute Metrics")
        results_json = gr.JSON(label="Metrics & Status")

    # Wire events
    btn.click(
        fn=_transcribe_and_store,
        inputs=[audio, lang],
        outputs=[output, meta_state, corrected_tb]
    )

    submit_btn.click(
        fn=submit_feedback,
        inputs=[
            meta_state,
            reference_tb,
            corrected_tb,
            score_slider,
            feedback_tb,
            tags_cb,
            store_audio_cb,
            share_cb,
            audio  # raw file path from gr.Audio
        ],
        outputs=results_json
    )

# Use a queue to keep Spaces stable under load
if __name__ == "__main__":
    demo.queue()  # enable_queue=True by default in recent Gradio
    demo.launch()