Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# app.py (MP3-robust loader +
|
2 |
|
3 |
import os
|
4 |
import json
|
@@ -13,11 +13,6 @@ from transformers import pipeline
|
|
13 |
import numpy as np
|
14 |
import soundfile as sf # librosa depends on this; good for wav/flac/ogg
|
15 |
import librosa # fallback / resampling
|
16 |
-
import pandas as pd
|
17 |
-
import pyarrow.parquet as pq
|
18 |
-
import pyarrow as pa
|
19 |
-
from huggingface_hub import HfApi
|
20 |
-
from typing import Optional, Tuple, Dict, Any
|
21 |
|
22 |
# Optional: modest thread hints for CPU Spaces
|
23 |
try:
|
@@ -27,27 +22,95 @@ try:
|
|
27 |
except Exception:
|
28 |
pass
|
29 |
|
30 |
-
#
|
31 |
-
logging.basicConfig(
|
32 |
-
level=logging.INFO,
|
33 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
34 |
-
)
|
35 |
-
logger = logging.getLogger(__name__)
|
36 |
|
37 |
-
#
|
|
|
|
|
|
|
38 |
HF_DATASET_REPO = os.environ.get("HF_DATASET_REPO", "DarliAI/asr-feedback-logs")
|
39 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
40 |
PUSH_TO_HF = bool(HF_TOKEN and HF_DATASET_REPO)
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# --- Map display names to your HF Hub model IDs ---
|
46 |
language_models = {
|
47 |
"Akan (Asante Twi)": "FarmerlineML/w2v-bert-2.0_twi_alpha_v1",
|
48 |
"Ewe": "FarmerlineML/w2v-bert-2.0_ewe_2",
|
49 |
"Kiswahili": "FarmerlineML/w2v-bert-2.0_swahili_alpha",
|
50 |
-
"Luganda": "FarmerlineML/w2v-bert-2.0_luganda",
|
|
|
51 |
"Brazilian Portuguese": "FarmerlineML/w2v-bert-2.0_brazilian_portugese_alpha",
|
52 |
"Fante": "misterkissi/w2v2-lg-xls-r-300m-fante",
|
53 |
"Bemba": "DarliAI/kissi-w2v2-lg-xls-r-300m-bemba",
|
@@ -65,180 +128,61 @@ language_models = {
|
|
65 |
"Amharic": "misterkissi/w2v2-lg-xls-r-1b-amharic",
|
66 |
"Xhosa": "misterkissi/w2v2-lg-xls-r-300m-xhosa",
|
67 |
"Tsonga": "misterkissi/w2v2-lg-xls-r-300m-tsonga",
|
|
|
|
|
|
|
68 |
"Yoruba": "FarmerlineML/w2v-bert-2.0_yoruba_v1",
|
69 |
"Luo": "FarmerlineML/w2v-bert-2.0_luo_v2",
|
70 |
"Somali": "FarmerlineML/w2v-bert-2.0_somali_alpha",
|
71 |
"Pidgin": "FarmerlineML/pidgin_nigerian",
|
72 |
"Kikuyu": "FarmerlineML/w2v-bert-2.0_kikuyu",
|
73 |
"Igbo": "FarmerlineML/w2v-bert-2.0_igbo_v1",
|
74 |
-
"Krio":
|
75 |
}
|
76 |
|
77 |
-
# -------- Robust Dataset Push Function --------
|
78 |
-
def _push_row_to_hf_dataset(row: Dict[str, Any], audio_file_path: Optional[str]) -> str:
|
79 |
-
"""
|
80 |
-
Append a single example to the HF dataset repo using Parquet files.
|
81 |
-
Each submission creates a new Parquet file to avoid overwrites.
|
82 |
-
"""
|
83 |
-
if not PUSH_TO_HF:
|
84 |
-
return "HF push disabled (missing HF_TOKEN or repo)."
|
85 |
-
|
86 |
-
if not hf_api:
|
87 |
-
return "HF API client not initialized."
|
88 |
-
|
89 |
-
# Create a copy of the row to avoid modifying the original
|
90 |
-
example = dict(row)
|
91 |
-
|
92 |
-
# Generate unique identifiers for this submission
|
93 |
-
timestamp = time.strftime("%Y%m%d_%H%M%S", time.gmtime())
|
94 |
-
unique_id = str(uuid.uuid4())[:8]
|
95 |
-
|
96 |
-
# Handle audio file if provided and user consented
|
97 |
-
audio_uploaded = False
|
98 |
-
if audio_file_path and os.path.isfile(audio_file_path) and example.get("share_publicly", False):
|
99 |
-
try:
|
100 |
-
# Store reference to audio file in the dataset
|
101 |
-
audio_filename = f"audio_{timestamp}_{unique_id}{os.path.splitext(audio_file_path)[1]}"
|
102 |
-
example["audio_filename"] = audio_filename
|
103 |
-
|
104 |
-
# Upload audio file separately
|
105 |
-
logger.info(f"Uploading audio file: {audio_filename}")
|
106 |
-
hf_api.upload_file(
|
107 |
-
path_or_fileobj=audio_file_path,
|
108 |
-
path_in_repo=f"audio/{audio_filename}",
|
109 |
-
repo_id=HF_DATASET_REPO,
|
110 |
-
repo_type="dataset",
|
111 |
-
token=HF_TOKEN,
|
112 |
-
commit_message=f"Add audio for feedback {timestamp}"
|
113 |
-
)
|
114 |
-
audio_uploaded = True
|
115 |
-
logger.info("Audio file uploaded successfully")
|
116 |
-
except Exception as e:
|
117 |
-
logger.error(f"Failed to upload audio: {e}")
|
118 |
-
example["audio_filename"] = None
|
119 |
-
else:
|
120 |
-
example["audio_filename"] = None
|
121 |
-
|
122 |
-
# Normalize data types for Parquet storage
|
123 |
-
def _safe_cast(value, cast_func, default=None):
|
124 |
-
"""Safely cast a value to a type, returning default on failure."""
|
125 |
-
try:
|
126 |
-
return cast_func(value) if value is not None else default
|
127 |
-
except (ValueError, TypeError):
|
128 |
-
return default
|
129 |
-
|
130 |
-
# Type normalization
|
131 |
-
example["latency_ms"] = _safe_cast(example.get("latency_ms"), int)
|
132 |
-
example["score_out_of_10"] = _safe_cast(example.get("score_out_of_10"), int)
|
133 |
-
example["sample_rate"] = _safe_cast(example.get("sample_rate"), int)
|
134 |
-
example["rtf"] = _safe_cast(example.get("rtf"), float)
|
135 |
-
example["audio_duration_s"] = _safe_cast(example.get("audio_duration_s"), float)
|
136 |
-
example["share_publicly"] = bool(example.get("share_publicly", False))
|
137 |
-
|
138 |
-
# Ensure all string fields are properly handled
|
139 |
-
string_fields = ["timestamp", "session_id", "language_display", "model_id",
|
140 |
-
"model_revision", "source", "decode_params", "transcript_hyp",
|
141 |
-
"corrected_text"]
|
142 |
-
for field in string_fields:
|
143 |
-
if field in example and example[field] is not None:
|
144 |
-
example[field] = str(example[field])
|
145 |
-
|
146 |
-
# Create DataFrame and save as Parquet
|
147 |
-
df = pd.DataFrame([example])
|
148 |
-
|
149 |
-
# Generate Parquet filename
|
150 |
-
parquet_filename = f"feedback_{timestamp}_{unique_id}.parquet"
|
151 |
-
|
152 |
-
# Create temporary Parquet file
|
153 |
-
temp_parquet = None
|
154 |
-
try:
|
155 |
-
with tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as tmp_file:
|
156 |
-
temp_parquet = tmp_file.name
|
157 |
-
df.to_parquet(temp_parquet, engine='pyarrow', compression='snappy')
|
158 |
-
|
159 |
-
# Upload Parquet file to dataset repo
|
160 |
-
logger.info(f"Uploading feedback data: {parquet_filename}")
|
161 |
-
hf_api.upload_file(
|
162 |
-
path_or_fileobj=temp_parquet,
|
163 |
-
path_in_repo=f"data/{parquet_filename}",
|
164 |
-
repo_id=HF_DATASET_REPO,
|
165 |
-
repo_type="dataset",
|
166 |
-
token=HF_TOKEN,
|
167 |
-
commit_message=f"Add feedback row {timestamp}"
|
168 |
-
)
|
169 |
-
logger.info("Feedback data uploaded successfully")
|
170 |
-
|
171 |
-
status_msg = f"Successfully pushed to HF Dataset as {parquet_filename}"
|
172 |
-
if audio_uploaded:
|
173 |
-
status_msg += " (with audio)"
|
174 |
-
return status_msg
|
175 |
-
|
176 |
-
except Exception as e:
|
177 |
-
logger.error(f"Failed to push to HF Dataset: {e}")
|
178 |
-
return f"Failed to push to HF Dataset: {str(e)}"
|
179 |
-
finally:
|
180 |
-
# Clean up temporary file
|
181 |
-
if temp_parquet and os.path.exists(temp_parquet):
|
182 |
-
try:
|
183 |
-
os.remove(temp_parquet)
|
184 |
-
except Exception as e:
|
185 |
-
logger.warning(f"Failed to remove temp file: {e}")
|
186 |
-
|
187 |
# -------- Robust audio loader (handles MP3/M4A via ffmpeg; wav/flac via soundfile) --------
|
188 |
TARGET_SR = 16000
|
189 |
|
190 |
-
def _has_ffmpeg()
|
191 |
-
"""Check if ffmpeg is available in the system."""
|
192 |
return shutil.which("ffmpeg") is not None
|
193 |
|
194 |
-
def _load_with_soundfile(path
|
195 |
-
"""Load audio using soundfile (for wav/flac/ogg)."""
|
196 |
data, sr = sf.read(path, always_2d=False)
|
197 |
if isinstance(data, np.ndarray) and data.ndim > 1:
|
198 |
data = data.mean(axis=1)
|
199 |
return data.astype(np.float32), sr
|
200 |
|
201 |
-
def _load_with_ffmpeg(path
|
202 |
-
|
203 |
if not _has_ffmpeg():
|
204 |
raise RuntimeError("ffmpeg not available")
|
205 |
-
|
206 |
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
207 |
tmp_wav.close()
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
try:
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
subprocess.run(cmd, check=True)
|
217 |
-
data, sr = sf.read(tmp_wav.name, always_2d=False)
|
218 |
-
|
219 |
-
if isinstance(data, np.ndarray) and data.ndim > 1:
|
220 |
-
data = data.mean(axis=1)
|
221 |
-
return data.astype(np.float32), sr
|
222 |
-
finally:
|
223 |
-
try:
|
224 |
-
os.remove(tmp_wav.name)
|
225 |
-
except Exception:
|
226 |
-
pass
|
227 |
|
228 |
-
def _resample_if_needed(y
|
229 |
-
"""Resample audio if needed."""
|
230 |
if sr == target_sr:
|
231 |
return y.astype(np.float32), sr
|
232 |
y_rs = librosa.resample(y.astype(np.float32), orig_sr=sr, target_sr=target_sr)
|
233 |
return y_rs.astype(np.float32), target_sr
|
234 |
|
235 |
-
def load_audio_any(path
|
236 |
"""Robust loader: wav/flac/ogg via soundfile; mp3/m4a via ffmpeg; fallback to librosa."""
|
237 |
-
if not os.path.exists(path):
|
238 |
-
raise FileNotFoundError(f"Audio file not found: {path}")
|
239 |
-
|
240 |
ext = os.path.splitext(path)[1].lower()
|
241 |
-
|
242 |
try:
|
243 |
if ext in {".wav", ".flac", ".ogg", ".opus"}:
|
244 |
y, sr = _load_with_soundfile(path)
|
@@ -248,11 +192,10 @@ def load_audio_any(path: str, target_sr: int = TARGET_SR) -> Tuple[np.ndarray, i
|
|
248 |
else:
|
249 |
# Fallback to librosa for formats like mp3/m4a when ffmpeg isn't present
|
250 |
y, sr = librosa.load(path, sr=None, mono=True)
|
251 |
-
|
252 |
y, sr = _resample_if_needed(y, sr, target_sr)
|
253 |
return y, sr
|
254 |
except Exception as e:
|
255 |
-
|
256 |
y, sr = librosa.load(path, sr=target_sr, mono=True)
|
257 |
return y.astype(np.float32), sr
|
258 |
|
@@ -261,23 +204,20 @@ _PIPELINE_CACHE = {}
|
|
261 |
_CACHE_ORDER = [] # usage order
|
262 |
_CACHE_MAX_SIZE = 3 # tune for RAM
|
263 |
|
264 |
-
def _touch_cache(key
|
265 |
-
"""Update cache access order."""
|
266 |
if key in _CACHE_ORDER:
|
267 |
_CACHE_ORDER.remove(key)
|
268 |
_CACHE_ORDER.insert(0, key)
|
269 |
|
270 |
def _evict_if_needed():
|
271 |
-
"""Evict least recently used pipelines if cache is full."""
|
272 |
while len(_PIPELINE_CACHE) > _CACHE_MAX_SIZE:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
|
279 |
def get_asr_pipeline(language_display: str):
|
280 |
-
"""Get or create ASR pipeline for the specified language."""
|
281 |
if language_display not in language_models:
|
282 |
raise ValueError(f"Unknown language selection: {language_display}")
|
283 |
|
@@ -286,15 +226,13 @@ def get_asr_pipeline(language_display: str):
|
|
286 |
return _PIPELINE_CACHE[language_display]
|
287 |
|
288 |
model_id = language_models[language_display]
|
289 |
-
|
290 |
-
|
291 |
pipe = pipeline(
|
292 |
task="automatic-speech-recognition",
|
293 |
model=model_id,
|
294 |
-
device=-1,
|
295 |
chunk_length_s=30
|
296 |
)
|
297 |
-
|
298 |
_PIPELINE_CACHE[language_display] = pipe
|
299 |
_touch_cache(language_display)
|
300 |
_evict_if_needed()
|
@@ -302,7 +240,7 @@ def get_asr_pipeline(language_display: str):
|
|
302 |
|
303 |
# -------- Helpers --------
|
304 |
def _model_revision_from_pipeline(pipe) -> str:
|
305 |
-
|
306 |
for attr in ("hub_revision", "revision", "_commit_hash"):
|
307 |
val = getattr(getattr(pipe, "model", None), attr, None)
|
308 |
if val:
|
@@ -313,7 +251,7 @@ def _model_revision_from_pipeline(pipe) -> str:
|
|
313 |
return "unknown"
|
314 |
|
315 |
# -------- Inference --------
|
316 |
-
def transcribe(audio_path: str, language: str)
|
317 |
"""
|
318 |
Robust audio load (mp3/m4a friendly), resample to 16 kHz mono,
|
319 |
then run it through the chosen ASR pipeline.
|
@@ -321,269 +259,138 @@ def transcribe(audio_path: str, language: str) -> Tuple[str, Optional[Dict[str,
|
|
321 |
"""
|
322 |
if not audio_path:
|
323 |
return "⚠️ Please upload or record an audio clip.", None
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
"latency_ms": latency_ms,
|
357 |
-
"rtf": rtf,
|
358 |
-
}
|
359 |
-
|
360 |
-
logger.info(f"Transcription complete. RTF: {rtf:.3f}")
|
361 |
-
return hyp_text, meta
|
362 |
-
|
363 |
-
except Exception as e:
|
364 |
-
logger.error(f"Transcription failed: {e}")
|
365 |
-
return f"❌ Transcription failed: {str(e)}", None
|
366 |
-
|
367 |
-
# -------- Feedback submit --------
|
368 |
-
def submit_feedback(
|
369 |
-
meta: Optional[Dict[str, Any]],
|
370 |
-
corrected_text: str,
|
371 |
-
score: int,
|
372 |
-
store_audio: bool,
|
373 |
-
share_publicly: bool,
|
374 |
-
audio_file_path: Optional[str]
|
375 |
-
) -> Dict[str, Any]:
|
376 |
"""
|
377 |
-
|
378 |
"""
|
379 |
if not meta:
|
380 |
-
return {
|
381 |
-
|
382 |
-
"success": False
|
383 |
-
}
|
384 |
-
|
385 |
-
# Prepare row data
|
386 |
row = dict(meta)
|
387 |
row.update({
|
388 |
"corrected_text": (corrected_text or "").strip(),
|
389 |
"score_out_of_10": int(score) if score is not None else None,
|
390 |
"share_publicly": bool(share_publicly),
|
391 |
})
|
392 |
-
|
393 |
-
# Push to HF Dataset
|
394 |
try:
|
395 |
audio_to_push = audio_file_path if store_audio else None
|
396 |
hf_status = _push_row_to_hf_dataset(row, audio_to_push)
|
397 |
-
|
398 |
-
return {
|
399 |
-
"status": f"✅ {hf_status}",
|
400 |
-
"success": True,
|
401 |
-
"latency_ms": row["latency_ms"],
|
402 |
-
"rtf": f"{row['rtf']:.3f}",
|
403 |
-
"model_id": row["model_id"],
|
404 |
-
"model_revision": row["model_revision"],
|
405 |
-
"language": row["language_display"],
|
406 |
-
}
|
407 |
except Exception as e:
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
with gr.Column(scale=1):
|
435 |
-
lang = gr.Dropdown(
|
436 |
-
choices=list(language_models.keys()),
|
437 |
-
value=list(language_models.keys())[0],
|
438 |
-
label="Select Language / Model",
|
439 |
-
info="Choose the language of your audio"
|
440 |
-
)
|
441 |
-
|
442 |
-
audio = gr.Audio(
|
443 |
-
sources=["upload", "microphone"],
|
444 |
-
type="filepath",
|
445 |
-
label="Upload or Record Audio",
|
446 |
-
elem_id="audio-input"
|
447 |
-
)
|
448 |
-
|
449 |
-
btn = gr.Button("🎯 Transcribe", variant="primary", size="lg")
|
450 |
-
|
451 |
-
with gr.Column(scale=1):
|
452 |
-
output = gr.Textbox(
|
453 |
-
label="Transcription",
|
454 |
-
placeholder="Transcription will appear here...",
|
455 |
-
lines=5
|
456 |
-
)
|
457 |
-
|
458 |
-
# Status indicators
|
459 |
-
with gr.Row():
|
460 |
-
status_box = gr.Textbox(
|
461 |
-
label="Status",
|
462 |
-
interactive=False,
|
463 |
-
placeholder="Ready",
|
464 |
-
max_lines=1
|
465 |
-
)
|
466 |
-
|
467 |
-
# Hidden state to carry metadata from transcribe -> feedback
|
468 |
-
meta_state = gr.State(value=None)
|
469 |
-
|
470 |
-
# Evaluation section
|
471 |
-
with gr.Accordion("📝 Evaluation & Feedback", open=False):
|
472 |
-
gr.Markdown(
|
473 |
-
"""
|
474 |
-
Help us improve! Please provide feedback on the transcription quality.
|
475 |
-
"""
|
476 |
-
)
|
477 |
-
|
478 |
-
with gr.Row():
|
479 |
-
corrected_tb = gr.Textbox(
|
480 |
-
label="Corrected transcript (optional)",
|
481 |
-
placeholder="If there are errors, type the correct transcription here...",
|
482 |
-
lines=4,
|
483 |
-
value=""
|
484 |
-
)
|
485 |
-
|
486 |
-
with gr.Row():
|
487 |
-
score_slider = gr.Slider(
|
488 |
-
minimum=0,
|
489 |
-
maximum=10,
|
490 |
-
step=1,
|
491 |
-
label="Quality Score (0 = terrible, 10 = perfect)",
|
492 |
-
value=7,
|
493 |
-
info="Rate the transcription quality"
|
494 |
-
)
|
495 |
-
|
496 |
-
with gr.Row():
|
497 |
-
store_audio_cb = gr.Checkbox(
|
498 |
-
label="Allow storing my audio for research/evaluation",
|
499 |
-
value=False,
|
500 |
-
info="Audio will be stored securely and used only for improving the models"
|
501 |
-
)
|
502 |
-
share_cb = gr.Checkbox(
|
503 |
-
label="Allow sharing this example publicly",
|
504 |
-
value=False,
|
505 |
-
info="Your example may be used in public datasets or demos"
|
506 |
-
)
|
507 |
-
|
508 |
-
submit_btn = gr.Button("📤 Submit Feedback", variant="secondary")
|
509 |
-
|
510 |
-
results_json = gr.JSON(
|
511 |
-
label="Submission Result",
|
512 |
-
visible=True
|
513 |
-
)
|
514 |
-
|
515 |
-
# Examples section
|
516 |
-
with gr.Accordion("📚 Example Usage", open=False):
|
517 |
-
gr.Markdown(
|
518 |
-
"""
|
519 |
-
### Tips for best results:
|
520 |
-
- Speak clearly and at a normal pace
|
521 |
-
- Minimize background noise
|
522 |
-
- Keep recordings under 30 seconds for optimal performance
|
523 |
-
- Select the correct language before transcribing
|
524 |
-
|
525 |
-
### Supported formats:
|
526 |
-
WAV, MP3, FLAC, M4A, OGG, OPUS, and more!
|
527 |
-
"""
|
528 |
-
)
|
529 |
-
|
530 |
-
# Wire up events
|
531 |
-
def _transcribe_and_update(audio_path, language):
|
532 |
-
"""Transcribe and update UI components."""
|
533 |
-
if not audio_path:
|
534 |
-
return "", None, "", "⚠️ Please provide audio"
|
535 |
-
|
536 |
-
status_box_val = f"🔄 Processing {language}..."
|
537 |
-
hyp, meta = transcribe(audio_path, language)
|
538 |
-
|
539 |
-
if meta:
|
540 |
-
status_msg = f"✅ Done! (RTF: {meta['rtf']:.3f})"
|
541 |
-
# Pre-fill corrected with hypothesis for easy edits
|
542 |
-
return hyp, meta, hyp, status_msg
|
543 |
-
else:
|
544 |
-
return hyp, None, "", "❌ Transcription failed"
|
545 |
-
|
546 |
-
btn.click(
|
547 |
-
fn=_transcribe_and_update,
|
548 |
-
inputs=[audio, lang],
|
549 |
-
outputs=[output, meta_state, corrected_tb, status_box]
|
550 |
-
)
|
551 |
-
|
552 |
-
submit_btn.click(
|
553 |
-
fn=submit_feedback,
|
554 |
-
inputs=[
|
555 |
-
meta_state,
|
556 |
-
corrected_tb,
|
557 |
-
score_slider,
|
558 |
-
store_audio_cb,
|
559 |
-
share_cb,
|
560 |
-
audio
|
561 |
-
],
|
562 |
-
outputs=results_json
|
563 |
)
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
)
|
571 |
-
|
572 |
-
return demo
|
573 |
|
574 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
if __name__ == "__main__":
|
576 |
-
|
577 |
-
|
578 |
-
logger.info(f"HF Dataset Repo: {HF_DATASET_REPO}")
|
579 |
-
logger.info(f"Push to HF enabled: {PUSH_TO_HF}")
|
580 |
-
logger.info(f"Available languages: {len(language_models)}")
|
581 |
-
|
582 |
-
# Create and launch demo
|
583 |
-
demo = create_demo()
|
584 |
-
demo.queue(max_size=10) # Limit queue size for stability
|
585 |
-
demo.launch(
|
586 |
-
server_name="0.0.0.0",
|
587 |
-
server_port=7860,
|
588 |
-
share=False # Set to True if you want a public link
|
589 |
-
)
|
|
|
1 |
+
# app.py (MP3-robust loader + Luganda FKD commented; minimal feedback)
|
2 |
|
3 |
import os
|
4 |
import json
|
|
|
13 |
import numpy as np
|
14 |
import soundfile as sf # librosa depends on this; good for wav/flac/ogg
|
15 |
import librosa # fallback / resampling
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Optional: modest thread hints for CPU Spaces
|
18 |
try:
|
|
|
22 |
except Exception:
|
23 |
pass
|
24 |
|
25 |
+
# Basic logging so we can verify which model is loaded per inference
|
26 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# --- External logging: push to a HF Dataset repo on each submit (no local storage) ---
|
29 |
+
from datasets import Dataset, Features, Value, Audio, load_dataset
|
30 |
+
|
31 |
+
# -------- CONFIG: Hub dataset target (no persistent storage needed) --------
|
32 |
HF_DATASET_REPO = os.environ.get("HF_DATASET_REPO", "DarliAI/asr-feedback-logs")
|
33 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
34 |
PUSH_TO_HF = bool(HF_TOKEN and HF_DATASET_REPO)
|
35 |
|
36 |
+
HF_FEATURES = Features({
|
37 |
+
"timestamp": Value("string"),
|
38 |
+
"session_id": Value("string"),
|
39 |
+
"language_display": Value("string"),
|
40 |
+
"model_id": Value("string"),
|
41 |
+
"model_revision": Value("string"),
|
42 |
+
|
43 |
+
"audio": Audio(sampling_rate=None), # uploaded only if user consents
|
44 |
+
"audio_duration_s": Value("float32"),
|
45 |
+
"sample_rate": Value("int32"),
|
46 |
+
"source": Value("string"),
|
47 |
+
"decode_params": Value("string"),
|
48 |
+
|
49 |
+
"transcript_hyp": Value("string"),
|
50 |
+
"corrected_text": Value("string"),
|
51 |
+
|
52 |
+
"latency_ms": Value("int32"),
|
53 |
+
"rtf": Value("float32"),
|
54 |
+
|
55 |
+
"score_out_of_10": Value("int32"),
|
56 |
+
"share_publicly": Value("bool"),
|
57 |
+
})
|
58 |
+
|
59 |
+
def _push_row_to_hf_dataset(row, audio_file_path):
|
60 |
+
"""
|
61 |
+
Append a single example to the HF dataset repo (train split).
|
62 |
+
If user didn't consent or no audio path, 'audio' field is None.
|
63 |
+
"""
|
64 |
+
if not PUSH_TO_HF:
|
65 |
+
return "HF push disabled (missing HF_TOKEN or repo)."
|
66 |
+
|
67 |
+
example = dict(row)
|
68 |
+
|
69 |
+
# Audio: only include if user consented and file exists
|
70 |
+
example["audio"] = audio_file_path if (audio_file_path and os.path.isfile(audio_file_path)) else None
|
71 |
+
|
72 |
+
# Normalize types
|
73 |
+
def _to_int(v):
|
74 |
+
try:
|
75 |
+
return int(v)
|
76 |
+
except Exception:
|
77 |
+
return None
|
78 |
+
def _to_float(v):
|
79 |
+
try:
|
80 |
+
return float(v)
|
81 |
+
except Exception:
|
82 |
+
return None
|
83 |
+
|
84 |
+
for k in ["latency_ms", "score_out_of_10", "sample_rate"]:
|
85 |
+
example[k] = _to_int(example.get(k))
|
86 |
+
for k in ["rtf", "audio_duration_s"]:
|
87 |
+
example[k] = _to_float(example.get(k))
|
88 |
+
|
89 |
+
ds = Dataset.from_list([example], features=HF_FEATURES)
|
90 |
+
|
91 |
+
# Load existing split if present, then append
|
92 |
+
try:
|
93 |
+
existing = load_dataset(HF_DATASET_REPO, split="train", token=HF_TOKEN)
|
94 |
+
merged = existing.concatenate(ds)
|
95 |
+
except Exception:
|
96 |
+
merged = ds
|
97 |
+
|
98 |
+
merged.push_to_hub(
|
99 |
+
HF_DATASET_REPO,
|
100 |
+
split="train",
|
101 |
+
private=True,
|
102 |
+
token=HF_TOKEN,
|
103 |
+
commit_message="append feedback row"
|
104 |
+
)
|
105 |
+
return "Pushed to HF Dataset."
|
106 |
|
107 |
# --- Map display names to your HF Hub model IDs ---
|
108 |
language_models = {
|
109 |
"Akan (Asante Twi)": "FarmerlineML/w2v-bert-2.0_twi_alpha_v1",
|
110 |
"Ewe": "FarmerlineML/w2v-bert-2.0_ewe_2",
|
111 |
"Kiswahili": "FarmerlineML/w2v-bert-2.0_swahili_alpha",
|
112 |
+
"Luganda": "FarmerlineML/w2v-bert-2.0_luganda", # active
|
113 |
+
# "Luganda (FKD)": "FarmerlineML/luganda_fkd", # commented out per request
|
114 |
"Brazilian Portuguese": "FarmerlineML/w2v-bert-2.0_brazilian_portugese_alpha",
|
115 |
"Fante": "misterkissi/w2v2-lg-xls-r-300m-fante",
|
116 |
"Bemba": "DarliAI/kissi-w2v2-lg-xls-r-300m-bemba",
|
|
|
128 |
"Amharic": "misterkissi/w2v2-lg-xls-r-1b-amharic",
|
129 |
"Xhosa": "misterkissi/w2v2-lg-xls-r-300m-xhosa",
|
130 |
"Tsonga": "misterkissi/w2v2-lg-xls-r-300m-tsonga",
|
131 |
+
# "WOLOF": "misterkissi/w2v2-lg-xls-r-1b-wolof",
|
132 |
+
# "HAITIAN CREOLE": "misterkissi/whisper-small-haitian-creole",
|
133 |
+
# "KABYLE": "misterkissi/w2v2-lg-xls-r-1b-kabyle",
|
134 |
"Yoruba": "FarmerlineML/w2v-bert-2.0_yoruba_v1",
|
135 |
"Luo": "FarmerlineML/w2v-bert-2.0_luo_v2",
|
136 |
"Somali": "FarmerlineML/w2v-bert-2.0_somali_alpha",
|
137 |
"Pidgin": "FarmerlineML/pidgin_nigerian",
|
138 |
"Kikuyu": "FarmerlineML/w2v-bert-2.0_kikuyu",
|
139 |
"Igbo": "FarmerlineML/w2v-bert-2.0_igbo_v1",
|
140 |
+
"Krio": "FarmerlineML/w2v-bert-2.0_krio_v3",
|
141 |
}
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# -------- Robust audio loader (handles MP3/M4A via ffmpeg; wav/flac via soundfile) --------
|
144 |
TARGET_SR = 16000
|
145 |
|
146 |
+
def _has_ffmpeg():
|
|
|
147 |
return shutil.which("ffmpeg") is not None
|
148 |
|
149 |
+
def _load_with_soundfile(path):
|
|
|
150 |
data, sr = sf.read(path, always_2d=False)
|
151 |
if isinstance(data, np.ndarray) and data.ndim > 1:
|
152 |
data = data.mean(axis=1)
|
153 |
return data.astype(np.float32), sr
|
154 |
|
155 |
+
def _load_with_ffmpeg(path, target_sr=TARGET_SR):
|
156 |
+
# Convert to mono 16k wav in a temp file using ffmpeg
|
157 |
if not _has_ffmpeg():
|
158 |
raise RuntimeError("ffmpeg not available")
|
|
|
159 |
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
160 |
tmp_wav.close()
|
161 |
+
cmd = [
|
162 |
+
"ffmpeg", "-hide_banner", "-loglevel", "error",
|
163 |
+
"-y", "-i", path,
|
164 |
+
"-ac", "1", "-ar", str(target_sr),
|
165 |
+
tmp_wav.name,
|
166 |
+
]
|
167 |
+
subprocess.run(cmd, check=True)
|
168 |
+
data, sr = sf.read(tmp_wav.name, always_2d=False)
|
169 |
try:
|
170 |
+
os.remove(tmp_wav.name)
|
171 |
+
except Exception:
|
172 |
+
pass
|
173 |
+
if isinstance(data, np.ndarray) and data.ndim > 1:
|
174 |
+
data = data.mean(axis=1)
|
175 |
+
return data.astype(np.float32), sr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
def _resample_if_needed(y, sr, target_sr=TARGET_SR):
|
|
|
178 |
if sr == target_sr:
|
179 |
return y.astype(np.float32), sr
|
180 |
y_rs = librosa.resample(y.astype(np.float32), orig_sr=sr, target_sr=target_sr)
|
181 |
return y_rs.astype(np.float32), target_sr
|
182 |
|
183 |
+
def load_audio_any(path, target_sr=TARGET_SR):
|
184 |
"""Robust loader: wav/flac/ogg via soundfile; mp3/m4a via ffmpeg; fallback to librosa."""
|
|
|
|
|
|
|
185 |
ext = os.path.splitext(path)[1].lower()
|
|
|
186 |
try:
|
187 |
if ext in {".wav", ".flac", ".ogg", ".opus"}:
|
188 |
y, sr = _load_with_soundfile(path)
|
|
|
192 |
else:
|
193 |
# Fallback to librosa for formats like mp3/m4a when ffmpeg isn't present
|
194 |
y, sr = librosa.load(path, sr=None, mono=True)
|
|
|
195 |
y, sr = _resample_if_needed(y, sr, target_sr)
|
196 |
return y, sr
|
197 |
except Exception as e:
|
198 |
+
logging.warning(f"[AUDIO] Primary load failed for {path} ({e}). Falling back to librosa.")
|
199 |
y, sr = librosa.load(path, sr=target_sr, mono=True)
|
200 |
return y.astype(np.float32), sr
|
201 |
|
|
|
204 |
_CACHE_ORDER = [] # usage order
|
205 |
_CACHE_MAX_SIZE = 3 # tune for RAM
|
206 |
|
207 |
+
def _touch_cache(key):
|
|
|
208 |
if key in _CACHE_ORDER:
|
209 |
_CACHE_ORDER.remove(key)
|
210 |
_CACHE_ORDER.insert(0, key)
|
211 |
|
212 |
def _evict_if_needed():
|
|
|
213 |
while len(_PIPELINE_CACHE) > _CACHE_MAX_SIZE:
|
214 |
+
oldest = _CACHE_ORDER.pop()
|
215 |
+
try:
|
216 |
+
del _PIPELINE_CACHE[oldest]
|
217 |
+
except KeyError:
|
218 |
+
pass
|
219 |
|
220 |
def get_asr_pipeline(language_display: str):
|
|
|
221 |
if language_display not in language_models:
|
222 |
raise ValueError(f"Unknown language selection: {language_display}")
|
223 |
|
|
|
226 |
return _PIPELINE_CACHE[language_display]
|
227 |
|
228 |
model_id = language_models[language_display]
|
229 |
+
logging.info(f"[ASR] Loading pipeline for '{language_display}' -> {model_id}")
|
|
|
230 |
pipe = pipeline(
|
231 |
task="automatic-speech-recognition",
|
232 |
model=model_id,
|
233 |
+
device=-1, # CPU on Spaces (explicit)
|
234 |
chunk_length_s=30
|
235 |
)
|
|
|
236 |
_PIPELINE_CACHE[language_display] = pipe
|
237 |
_touch_cache(language_display)
|
238 |
_evict_if_needed()
|
|
|
240 |
|
241 |
# -------- Helpers --------
|
242 |
def _model_revision_from_pipeline(pipe) -> str:
|
243 |
+
# Best-effort capture of revision/hash for reproducibility
|
244 |
for attr in ("hub_revision", "revision", "_commit_hash"):
|
245 |
val = getattr(getattr(pipe, "model", None), attr, None)
|
246 |
if val:
|
|
|
251 |
return "unknown"
|
252 |
|
253 |
# -------- Inference --------
|
254 |
+
def transcribe(audio_path: str, language: str):
|
255 |
"""
|
256 |
Robust audio load (mp3/m4a friendly), resample to 16 kHz mono,
|
257 |
then run it through the chosen ASR pipeline.
|
|
|
259 |
"""
|
260 |
if not audio_path:
|
261 |
return "⚠️ Please upload or record an audio clip.", None
|
262 |
+
|
263 |
+
speech, sr = load_audio_any(audio_path, target_sr=TARGET_SR)
|
264 |
+
duration_s = float(len(speech) / float(sr))
|
265 |
+
|
266 |
+
pipe = get_asr_pipeline(language)
|
267 |
+
decode_params = {"chunk_length_s": getattr(pipe, "chunk_length_s", 30)}
|
268 |
+
|
269 |
+
t0 = time.time()
|
270 |
+
result = pipe({"sampling_rate": sr, "raw": speech})
|
271 |
+
latency_ms = int((time.time() - t0) * 1000.0)
|
272 |
+
hyp_text = result.get("text", "")
|
273 |
+
|
274 |
+
rtf = (latency_ms / 1000.0) / max(duration_s, 1e-9)
|
275 |
+
|
276 |
+
meta = {
|
277 |
+
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()),
|
278 |
+
"session_id": f"anon-{uuid.uuid4()}",
|
279 |
+
"language_display": language,
|
280 |
+
"model_id": language_models.get(language, "unknown"),
|
281 |
+
"model_revision": _model_revision_from_pipeline(pipe),
|
282 |
+
"audio_duration_s": duration_s,
|
283 |
+
"sample_rate": sr,
|
284 |
+
"source": "upload",
|
285 |
+
"decode_params": json.dumps(decode_params),
|
286 |
+
"transcript_hyp": hyp_text,
|
287 |
+
"latency_ms": latency_ms,
|
288 |
+
"rtf": rtf,
|
289 |
+
}
|
290 |
+
return hyp_text, meta
|
291 |
+
|
292 |
+
# -------- Feedback submit (minimal) --------
|
293 |
+
def submit_feedback(meta, corrected_text, score, store_audio, share_publicly, audio_file_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
"""
|
295 |
+
Push a minimal row to HF Dataset: model info, language, transcript, optional corrected text, score.
|
296 |
"""
|
297 |
if not meta:
|
298 |
+
return {"status": "No transcription metadata available. Please transcribe first."}
|
299 |
+
|
|
|
|
|
|
|
|
|
300 |
row = dict(meta)
|
301 |
row.update({
|
302 |
"corrected_text": (corrected_text or "").strip(),
|
303 |
"score_out_of_10": int(score) if score is not None else None,
|
304 |
"share_publicly": bool(share_publicly),
|
305 |
})
|
306 |
+
|
|
|
307 |
try:
|
308 |
audio_to_push = audio_file_path if store_audio else None
|
309 |
hf_status = _push_row_to_hf_dataset(row, audio_to_push)
|
310 |
+
status = f"Feedback saved. {hf_status}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
except Exception as e:
|
312 |
+
status = f"Failed to push to HF Dataset: {e}"
|
313 |
+
|
314 |
+
return {
|
315 |
+
"status": status,
|
316 |
+
"latency_ms": row["latency_ms"],
|
317 |
+
"rtf": row["rtf"],
|
318 |
+
"model_id": row["model_id"],
|
319 |
+
"model_revision": row["model_revision"],
|
320 |
+
"language": row["language_display"],
|
321 |
+
}
|
322 |
+
|
323 |
+
# -------- UI (original preserved; additions appended) --------
|
324 |
+
with gr.Blocks(title="🌐 Multilingual ASR Demo") as demo:
|
325 |
+
gr.Markdown(
|
326 |
+
"""
|
327 |
+
## 🎙️ Multilingual Speech-to-Text
|
328 |
+
Upload an audio file (MP3, WAV, FLAC, M4A, OGG,…) or record via your microphone.
|
329 |
+
Then choose the language/model and hit **Transcribe**.
|
330 |
+
"""
|
331 |
+
)
|
332 |
+
|
333 |
+
with gr.Row():
|
334 |
+
lang = gr.Dropdown(
|
335 |
+
choices=list(language_models.keys()),
|
336 |
+
value=list(language_models.keys())[0],
|
337 |
+
label="Select Language / Model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
)
|
339 |
+
|
340 |
+
with gr.Row():
|
341 |
+
audio = gr.Audio(
|
342 |
+
sources=["upload", "microphone"],
|
343 |
+
type="filepath",
|
344 |
+
label="Upload or Record Audio"
|
345 |
)
|
|
|
|
|
346 |
|
347 |
+
btn = gr.Button("Transcribe")
|
348 |
+
output = gr.Textbox(label="Transcription")
|
349 |
+
|
350 |
+
# Hidden state to carry metadata from transcribe -> feedback
|
351 |
+
meta_state = gr.State(value=None)
|
352 |
+
|
353 |
+
# Keep original behavior: output shows transcript
|
354 |
+
# Also capture meta into the hidden state
|
355 |
+
def _transcribe_and_store(audio_path, language):
|
356 |
+
hyp, meta = transcribe(audio_path, language)
|
357 |
+
# Pre-fill corrected with hypothesis for easy edits
|
358 |
+
return hyp, meta, hyp
|
359 |
+
|
360 |
+
# --- Minimal Evaluation (score + optional corrected text) ---
|
361 |
+
with gr.Accordion("Evaluation", open=False):
|
362 |
+
with gr.Row():
|
363 |
+
corrected_tb = gr.Textbox(label="Corrected transcript (optional)", lines=4, value="")
|
364 |
+
with gr.Row():
|
365 |
+
score_slider = gr.Slider(minimum=0, maximum=10, step=1, label="Score out of 10", value=7)
|
366 |
+
with gr.Row():
|
367 |
+
store_audio_cb = gr.Checkbox(label="Allow storing my audio for research/eval", value=False)
|
368 |
+
share_cb = gr.Checkbox(label="Allow sharing this example publicly", value=False)
|
369 |
+
|
370 |
+
submit_btn = gr.Button("Submit")
|
371 |
+
results_json = gr.JSON(label="Status")
|
372 |
+
|
373 |
+
# Wire events
|
374 |
+
btn.click(
|
375 |
+
fn=_transcribe_and_store,
|
376 |
+
inputs=[audio, lang],
|
377 |
+
outputs=[output, meta_state, corrected_tb]
|
378 |
+
)
|
379 |
+
|
380 |
+
submit_btn.click(
|
381 |
+
fn=submit_feedback,
|
382 |
+
inputs=[
|
383 |
+
meta_state,
|
384 |
+
corrected_tb,
|
385 |
+
score_slider,
|
386 |
+
store_audio_cb,
|
387 |
+
share_cb,
|
388 |
+
audio # raw file path from gr.Audio
|
389 |
+
],
|
390 |
+
outputs=results_json
|
391 |
+
)
|
392 |
+
|
393 |
+
# Keep Spaces stable under load
|
394 |
if __name__ == "__main__":
|
395 |
+
demo.queue()
|
396 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|