TTS_Models / app.py
FarmerlineML's picture
Update app.py
3fe58e8 verified
raw
history blame
3.88 kB
import os
import tempfile
import torch
import numpy as np
import gradio as gr
import scipy.io.wavfile as wavfile
from pydub import AudioSegment
from transformers import VitsModel, AutoTokenizer
# ---------- Configuration --------------------------------------------------
# Define available TTS models here. Add new entries as needed.
TTS_MODELS = {
"Ewe": {
"tokenizer": "FarmerlineML/Ewe-tts-2025_v2",
"checkpoint": "FarmerlineML/Ewe-tts-2025_v2"
},
"Swahili": {
"tokenizer": "FarmerlineML/swahili-tts-2025",
"checkpoint": "FarmerlineML/Swahili-tts-2025_part4"
},
"Krio": {
"tokenizer": "FarmerlineML/Krio-TTS",
"checkpoint": "FarmerlineML/Krio-TTS"
},
}
device = "cuda" if torch.cuda.is_available() else "cpu"
# ---------- Load all models & tokenizers -----------------------------------
models = {}
tokenizers = {}
for name, paths in TTS_MODELS.items():
print(f"Loading {name} model...")
model = VitsModel.from_pretrained(paths["checkpoint"]).to(device)
model.eval()
# Apply clear-speech inference parameters (tweak per model if desired)
model.noise_scale = 0.8
model.noise_scale_duration = 0.667
model.speaking_rate = 0.75
models[name] = model
tokenizers[name] = AutoTokenizer.from_pretrained(paths["tokenizer"])
# ---------- Utility: WAV ➔ MP3 Conversion -----------------------------------
def _wav_to_mp3(wave_np: np.ndarray, sr: int) -> str:
"""Convert int16 numpy waveform to an MP3 temp file, return its path."""
# Ensure int16 for pydub
if wave_np.dtype != np.int16:
wave_np = (wave_np * 32767).astype(np.int16)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tf:
wavfile.write(tf.name, sr, wave_np)
wav_path = tf.name
mp3_path = wav_path.replace(".wav", ".mp3")
AudioSegment.from_wav(wav_path).export(mp3_path, format="mp3", bitrate="64k")
os.remove(wav_path)
return mp3_path
# ---------- TTS Generation ---------------------------------------------------
def tts_generate(model_name: str, text: str):
"""Generate speech for `text` using the selected model."""
if not text:
return None
model = models[model_name]
tokenizer = tokenizers[model_name]
inputs = tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
wave = model(**inputs).waveform[0].cpu().numpy()
return _wav_to_mp3(wave, model.config.sampling_rate)
# ---------- Gradio Interface ------------------------------------------------
examples = [
["Ewe", "kpovitɔwo dometɔ ɖeka lé kaƒomɔ ɖe asi eye wòɖo ŋɔtsitsyɔnu."],
["Ewe", "ɖeviawo ƒe gbɔsɔsɔ me anɔ abe enyi. fi si ɖeviwo le la ƒo ɖi. ɖeviawo kɔ nu kake aɖewo ɖe asi ɖewo hā nɔ wonuiwo kplɔm."],
["Ewe", "amewo le yɔƒe me eye aɖake le wogbɔ. wodo awu yibɔ ŋutsu aɖe le kponyi fam le akɔ fam ne nyɔnu aɖe."],
["Swahili", "zao kusaidia kuondoa umaskini na kujenga kampeni za mwamko wa virusi vya ukimwi amezitembelea"],
["Swahili", "Kidole hiki ni tofauti na vidole vingine kwa sababu mwelekeo wake ni wa pekee."],
["Swahili", "Tafadhali hakikisha umefunga mlango kabla ya kuondoka."],
["Krio", "Wetin na yu nem?"],
["Krio", "aw yu de du"],
["Krio", "A de go skul"],
]
demo = gr.Interface(
fn=tts_generate,
inputs=[
gr.Dropdown(choices=list(TTS_MODELS.keys()), value="Swahili", label="Choose TTS Model"),
gr.Textbox(lines=3, placeholder="Enter text here", label="Input Text")
],
outputs=gr.Audio(type="filepath", label="Audio", autoplay=True),
title="Multi‐Model Text-to-Speech",
description=(
"Select a TTS model from the dropdown and enter text to generate speech."
),
examples=examples,
cache_examples=True,
)
if __name__ == "__main__":
demo.launch()