TTS_Models / app.py
FarmerlineML's picture
Update app.py
4444ad6 verified
import os
import tempfile
import torch
import numpy as np
import gradio as gr
import scipy.io.wavfile as wavfile
from pydub import AudioSegment
from transformers import VitsModel, AutoTokenizer
# ---------- Configuration --------------------------------------------------
# Define available TTS models here. Add new entries as needed.
TTS_MODELS = {
"Ewe": {
"tokenizer": "FarmerlineML/Ewe-tts-2025_v3",
"checkpoint": "FarmerlineML/Ewe-tts-2025_v3"
},
"Swahili": {
"tokenizer": "FarmerlineML/swahili-tts-2025",
"checkpoint": "FarmerlineML/Swahili-tts-2025_part4"
},
"Krio": {
"tokenizer": "FarmerlineML/Krio-TTS",
"checkpoint": "FarmerlineML/Krio-TTS"
},
"Hausa": {
"tokenizer": "FarmerlineML/main_hausa_TTS",
"checkpoint": "FarmerlineML/main_hausa_TTS"
},
"Dagbani": {
"tokenizer": "FarmerlineML/dagbani_tts-2025",
"checkpoint": "FarmerlineML/dagbani_tts-2025"
},
}
device = "cuda" if torch.cuda.is_available() else "cpu"
# ---------- Load all models & tokenizers -----------------------------------
models = {}
tokenizers = {}
for name, paths in TTS_MODELS.items():
print(f"Loading {name} model...")
model = VitsModel.from_pretrained(paths["checkpoint"]).to(device)
model.eval()
# Apply clear-speech inference parameters (tweak per model if desired)
model.noise_scale = 0.5
model.noise_scale_duration = 0.5
model.speaking_rate = 0.9
models[name] = model
tokenizers[name] = AutoTokenizer.from_pretrained(paths["tokenizer"])
# ---------- Utility: WAV ➔ MP3 Conversion -----------------------------------
def _wav_to_mp3(wave_np: np.ndarray, sr: int) -> str:
"""Convert int16 numpy waveform to an MP3 temp file, return its path."""
# Ensure int16 for pydub
if wave_np.dtype != np.int16:
wave_np = (wave_np * 32767).astype(np.int16)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tf:
wavfile.write(tf.name, sr, wave_np)
wav_path = tf.name
mp3_path = wav_path.replace(".wav", ".mp3")
AudioSegment.from_wav(wav_path).export(mp3_path, format="mp3", bitrate="64k")
os.remove(wav_path)
return mp3_path
# ---------- TTS Generation ---------------------------------------------------
def tts_generate(model_name: str, text: str):
"""Generate speech for `text` using the selected model."""
if not text:
return None
model = models[model_name]
tokenizer = tokenizers[model_name]
inputs = tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
wave = model(**inputs).waveform[0].cpu().numpy()
return _wav_to_mp3(wave, model.config.sampling_rate)
# ---------- Gradio Interface ------------------------------------------------
examples = [
["Ewe", "amewo le atsi tre woɖo fli kple woƒe tɔkpowo kple agbawo kple galɔn wo. ʋu si nɔ tsi dram la tɔ ɖe wo xa eye nyɔnu eve yi le drɔm me le kɔkɔm ɖe tɔkpo kple galɔn me bubu hā le agba ɖe ta."],
["Ewe", "ɖekakpui ene wonɔ dɔgɔe me henɔ tsi kum le teƒe aɖe to. ɖeka ɖɔ kuku se avɔ ɖe ali eye tɔkpo et̄ɔ ye nɔ wo si."],
["Swahili", "zao kusaidia kuondoa umaskini na kujenga kampeni za mwamko wa virusi vya ukimwi amezitembelea"],
["Swahili", "Kidole hiki ni tofauti na vidole vingine kwa sababu mwelekeo wake ni wa pekee."],
["Swahili", "Tafadhali hakikisha umefunga mlango kabla ya kuondoka."],
["Krio", "Wetin na yu nem?"],
["Krio", "aw yu de du"],
["Hausa", "yaya za ka ƙi hafsan mafi ƙanƙanci na hafsoshin maigidana ko da yake kana dogara ga masar don kekunan yaƙi da mahayan dawakai"],
["Hausa", "ina fata dukkanku za ku ji ni sosai. wannan ita ce ma'anar kawai."],
["Dagbani", "bɛ ni ti va yi kuɣa mini yi taabɔdari ni yi taŋkpazim ti bahi kom ni"],
["Dagbani", "nyin' zaŋ taali maa galimi ʒili bɛn tum taali maa"],
]
demo = gr.Interface(
fn=tts_generate,
inputs=[
gr.Dropdown(choices=list(TTS_MODELS.keys()), value="Swahili", label="Choose TTS Model"),
gr.Textbox(lines=3, placeholder="Enter text here", label="Input Text")
],
outputs=gr.Audio(type="filepath", label="Audio", autoplay=True),
title="Multi‐Model Text-to-Speech",
description=(
"Select a TTS model from the dropdown and enter text to generate speech."
),
examples=examples,
cache_examples=True,
)
if __name__ == "__main__":
demo.launch()