Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor | |
# Load the model and processor | |
model_id = "openai/whisper-medium" | |
processor = WhisperProcessor.from_pretrained(model_id) | |
model = WhisperForConditionalGeneration.from_pretrained(model_id) | |
model.config.forced_decoder_ids = None | |
def transcribelocal(microphone, file_upload): | |
# Check which input is not None | |
if microphone is not None: | |
audio = microphone | |
else: | |
audio = file_upload | |
# Use the processor to transcribe the audio | |
transcription = processor.transcribe(audio, 48) | |
# Extract the confidence score and the duration from the transcription | |
confidence = transcription.confidence | |
duration = transcription.duration | |
# Remove the special tokens from the transcription text | |
text = transcription.text.replace("<|startoftranscript|>", "").replace("<|endoftranscript|>", "") | |
# Return the text, confidence and duration as outputs | |
return text, confidence, duration | |
# Create a Gradio interface with two modes: realtime and file upload | |
iface = gr.Interface( | |
fn=transcribelocal, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="numpy", label="Realtime Mode"), | |
gr.inputs.Audio(source="upload", type="numpy", label="File Upload Mode") | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Transcription"), | |
gr.outputs.Textbox(label="Confidence Score"), | |
gr.outputs.Textbox(label="Duration (seconds)") | |
], | |
title="Whisper Transcription App", | |
description="A Gradio app that uses OpenAI's whisper model to transcribe audio" | |
) | |
# Launch the app | |
iface.launch() |