Whisper-Demo / app.py
DarwinAnim8or's picture
Update app.py
8ac09b0
raw
history blame
1.58 kB
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, WhisperModel, WhisperProcessor
# Load the model and tokenizer
model_id = "openai/whisper-medium"
model = WhisperModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Create a WhisperProcessor instance
processor = WhisperProcessor(model=model, tokenizer=tokenizer)
# Define a function that takes an audio input and returns a transcription
def transcribe(audio):
# Use the processor to transcribe the audio
transcription = processor.transcribe(audio)
# Extract the confidence score and the duration from the transcription
confidence = transcription.confidence
duration = transcription.duration
# Remove the special tokens from the transcription text
text = transcription.text.replace("<|startoftranscript|>", "").replace("<|endoftranscript|>", "")
# Return the text, confidence and duration as outputs
return text, confidence, duration
# Create a Gradio interface with two modes: realtime and file upload
iface = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="numpy", label="Realtime Mode"),
gr.inputs.Audio(source="upload", type="numpy", label="File Upload Mode")
],
outputs=[
gr.outputs.Textbox(label="Transcription"),
gr.outputs.Textbox(label="Confidence Score"),
gr.outputs.Textbox(label="Duration (seconds)")
],
title="Whisper Transcription App",
description="A Gradio app that uses OpenAI's whisper model to transcribe audio"
)
# Launch the app
iface.launch()