File size: 16,932 Bytes
138996e
e368b32
2b4b49c
e368b32
2b4b49c
 
138996e
b27ddf3
2b4b49c
138996e
 
 
 
2b4b49c
 
 
 
 
 
 
138996e
2b4b49c
138996e
2b4b49c
55b7ba9
2b4b49c
e368b32
 
 
 
2b4b49c
e368b32
 
 
2b4b49c
 
 
 
 
 
e368b32
138996e
2b4b49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b7ba9
 
2b4b49c
 
 
 
 
138996e
2b4b49c
138996e
2b4b49c
 
 
 
 
 
 
e368b32
2b4b49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e368b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138996e
b27ddf3
2b4b49c
 
 
f7acbab
2b4b49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138996e
2b4b49c
 
b27ddf3
2b4b49c
 
 
 
 
55b7ba9
 
 
 
 
e368b32
 
 
bea9e81
e368b32
 
 
 
 
 
bea9e81
e368b32
 
 
bea9e81
e368b32
 
 
 
 
 
2b4b49c
 
 
 
 
 
 
 
 
 
 
 
 
e368b32
2b4b49c
 
 
 
 
 
 
e368b32
2b4b49c
e368b32
 
2b4b49c
 
 
 
 
 
 
e368b32
2b4b49c
e368b32
 
2b4b49c
e368b32
 
2b4b49c
 
e368b32
2b4b49c
e368b32
 
2b4b49c
 
e368b32
2b4b49c
e368b32
 
2b4b49c
 
e368b32
 
2b4b49c
99c0a36
 
 
 
2b4b49c
 
99c0a36
2b4b49c
 
 
 
 
99c0a36
2b4b49c
 
 
 
 
99c0a36
2b4b49c
 
 
 
 
99c0a36
2b4b49c
 
 
 
55b7ba9
 
e368b32
55b7ba9
e368b32
 
 
 
 
 
 
 
 
 
 
 
55b7ba9
2b4b49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b7ba9
 
2b4b49c
 
 
 
 
 
 
e368b32
55b7ba9
 
 
138996e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import json
import os
import pprint
import shutil
from functools import partial
from pathlib import Path

import gradio as gr

from dingo.exec import Executor
from dingo.io import InputArgs


def dingo_demo(
        uploaded_file,
        dataset_source, data_format, input_path, max_workers, batch_size,
        column_id, column_prompt, column_content, column_image,
        rule_list, prompt_list, scene_list,
        model, key, api_url
    ):
    if not data_format:
        raise gr.Error('ValueError: data_format can not be empty, please input.')
    if not column_content:
        raise gr.Error('ValueError: column_content can not be empty, please input.')
    if not rule_list and not prompt_list:
        raise gr.Error('ValueError: rule_list and prompt_list can not be empty at the same time.')

    # Handle input path based on dataset source
    if dataset_source == "hugging_face":
        if not input_path:
            raise gr.Error('ValueError: input_path can not be empty for hugging_face dataset, please input.')
        final_input_path = input_path
    else:  # local
        if not uploaded_file:
            raise gr.Error('Please upload a file for local dataset.')

        file_base_name = os.path.basename(uploaded_file.name)
        if not str(file_base_name).endswith(('.jsonl', '.json', '.txt')):
            raise gr.Error('File format must be \'.jsonl\', \'.json\' or \'.txt\'')

        final_input_path = uploaded_file.name

    if max_workers <= 0:
        raise gr.Error('Please input value > 0 in max_workers.')
    if batch_size <= 0:
        raise gr.Error('Please input value > 0 in batch_size.')

    try:
        input_data = {
            "dataset": dataset_source,
            "data_format": data_format,
            "input_path": final_input_path,
            "output_path": "" if dataset_source == 'hugging_face' else os.path.dirname(final_input_path),
            "save_data": True,
            "save_raw": True,

            "max_workers": max_workers,
            "batch_size": batch_size,

            "column_content": column_content,
            "custom_config":{
                "rule_list": rule_list,
                "prompt_list": prompt_list,
                "llm_config": {
                    scene_list: {
                        "model": model,
                        "key": key,
                        "api_url": api_url,
                    }
                }
            }
        }
        if column_id:
            input_data['column_id'] = column_id
        if column_prompt:
            input_data['column_prompt'] = column_prompt
        if column_image:
            input_data['column_image'] = column_image

        # print(input_data)
        # exit(0)

        input_args = InputArgs(**input_data)
        executor = Executor.exec_map["local"](input_args)
        summary = executor.execute().to_dict()
        detail = executor.get_bad_info_list()
        new_detail = []
        for item in detail:
            new_detail.append(item)
        if summary['output_path']:
            shutil.rmtree(summary['output_path'])

        # 返回两个值:概要信息和详细信息
        return json.dumps(summary, indent=4), new_detail
    except Exception as e:
        raise gr.Error(str(e))


def update_input_components(dataset_source):
    # 根据数据源的不同,返回不同的输入组件
    if dataset_source == "hugging_face":
        # 如果数据源是huggingface,返回一个可见的文本框和一个不可见的文件组件
        return [
            gr.Textbox(visible=True),
            gr.File(visible=False),
        ]
    else:  # local
        # 如果数据源是本地,返回一个不可见的文本框和一个可见的文件组件
        return [
            gr.Textbox(visible=False),
            gr.File(visible=True),
        ]


def update_rule_list(rule_type_mapping, rule_type):
    return gr.CheckboxGroup(
        choices=rule_type_mapping.get(rule_type, []),
        value=[],
        label="rule_list"
    )


def update_prompt_list(scene_prompt_mapping, scene):
    """根据选择的场景更新可用的prompt列表,并清空所有勾选"""
    return gr.CheckboxGroup(
        choices=scene_prompt_mapping.get(scene, []),
        value=[],  # 清空所有勾选
        label="prompt_list"
    )


# prompt_list变化时,动态控制model、key、api_url的显示
def toggle_llm_fields(prompt_values):
    visible = bool(prompt_values)
    return (
        gr.update(visible=visible),
        gr.update(visible=visible),
        gr.update(visible=visible)
    )


# 控制column_id、column_prompt、column_content、column_image的显示
def update_column_fields(rule_list, prompt_list):
    rule_type_mapping = get_rule_type_mapping()
    scene_prompt_mapping = get_scene_prompt_mapping()
    data_column_mapping = get_data_column_mapping()
    status_mapping = {
        'id': False,
        'prompt': False,
        'content': False,
        'image': False,
    }

    res = (
        gr.update(visible=status_mapping['id']),
        gr.update(visible=status_mapping['prompt']),
        gr.update(visible=status_mapping['content']),
        gr.update(visible=status_mapping['image'])
    )
    if not rule_list and not prompt_list:
        return res

    key_list = []
    key_list += get_key_by_mapping(rule_type_mapping, rule_list)
    key_list += get_key_by_mapping(scene_prompt_mapping, prompt_list)

    data_column = []
    for key in key_list:
        if not data_column:
            data_column = data_column_mapping[key]
        else:
            new_data_column = data_column_mapping[key]
            if data_column != new_data_column:
                raise gr.Error(f'ConflictError: {key} need data type is different from other.')

    for c in data_column:
        status_mapping[c] = True
    res = (
        gr.update(visible=status_mapping['id']),
        gr.update(visible=status_mapping['prompt']),
        gr.update(visible=status_mapping['content']),
        gr.update(visible=status_mapping['image'])
    )
    return res


def get_rule_type_mapping():
    return {
        'QUALITY_BAD_COMPLETENESS': ['RuleLineEndWithEllipsis', 'RuleLineEndWithTerminal', 'RuleSentenceNumber',
                                     'RuleWordNumber'],
        'QUALITY_BAD_EFFECTIVENESS': ['RuleAbnormalChar', 'RuleAbnormalHtml', 'RuleAlphaWords', 'RuleCharNumber',
                                      'RuleColonEnd', 'RuleContentNull', 'RuleContentShort', 'RuleContentShortMultiLan',
                                      'RuleEnterAndSpace', 'RuleEnterMore', 'RuleEnterRatioMore', 'RuleHtmlEntity',
                                      'RuleHtmlTag', 'RuleInvisibleChar', 'RuleLineJavascriptCount', 'RuleLoremIpsum',
                                      'RuleMeanWordLength', 'RuleSpaceMore', 'RuleSpecialCharacter', 'RuleStopWord',
                                      'RuleSymbolWordRatio', 'RuleOnlyUrl'],
        'QUALITY_BAD_FLUENCY': ['RuleAbnormalNumber', 'RuleCharSplit', 'RuleNoPunc', 'RuleWordSplit', 'RuleWordStuck'],
        'QUALITY_BAD_RELEVANCE': ['RuleHeadWordAr'],
        'QUALITY_BAD_SIMILARITY': ['RuleDocRepeat'],
        'QUALITY_BAD_UNDERSTANDABILITY': ['RuleCapitalWords', 'RuleCurlyBracket', 'RuleLineStartWithBulletpoint',
                                          'RuleUniqueWords'],
        'QUALITY_BAD_IMG_EFFECTIVENESS': ['RuleImageValid', 'RuleImageSizeValid', 'RuleImageQuality'],
        'QUALITY_BAD_IMG_RELEVANCE': ['RuleImageTextSimilarity'],
        'QUALITY_BAD_IMG_SIMILARITY': ['RuleImageRepeat']
    }


def get_scene_prompt_mapping():
    return {
        # 示例映射关系,你可以根据实际需求修改
        "LLMTextQualityPromptBase": ['PromptRepeat', 'PromptContentChaos'],
        'LLMTextQualityModelBase': ['PromptTextQualityV3', 'PromptTextQualityV4'],
        'LLMSecurityPolitics': ['PromptPolitics'],
        'LLMSecurityProhibition': ['PromptProhibition'],
        'LLMText3HHarmless': ['PromptTextHelpful'],
        'LLMText3HHelpful': ['PromptTextHelpful'],
        'LLMText3HHonest': ['PromptTextHonest'],
        'LLMClassifyTopic': ['PromptClassifyTopic'],
        'LLMClassifyQR': ['PromptClassifyQR'],
        "VLMImageRelevant": ["PromptImageRelevant"],
    }


def get_key_by_mapping(map_dict: dict, value_list: list):
    key_list = []
    for k,v in map_dict.items():
        if bool(set(v) & set(value_list)):
            key_list.append(k)

    return key_list


def get_data_column_mapping():
    return {
        'LLMTextQualityPromptBase': ['content'],
        'LLMTextQualityModelBase': ['content'],
        'LLMSecurityPolitics': ['content'],
        'LLMSecurityProhibition': ['content'],
        'LLMText3HHarmless': ['content'],
        'LLMText3HHelpful': ['content'],
        'LLMText3HHonest': ['content'],
        'LLMClassifyTopic': ['content'],
        'LLMClassifyQR': ['content'],
        'VLMImageRelevant': ['prompt', 'content'],
        'QUALITY_BAD_COMPLETENESS': ['content'],
        'QUALITY_BAD_EFFECTIVENESS': ['content'],
        'QUALITY_BAD_FLUENCY': ['content'],
        'QUALITY_BAD_RELEVANCE': ['content'],
        'QUALITY_BAD_SIMILARITY': ['content'],
        'QUALITY_BAD_UNDERSTANDABILITY': ['content'],
        'QUALITY_BAD_IMG_EFFECTIVENESS': ['image'],
        'QUALITY_BAD_IMG_RELEVANCE': ['content','image'],
        'QUALITY_BAD_IMG_SIMILARITY': ['content'],
    }


if __name__ == '__main__':
    rule_type_mapping = get_rule_type_mapping()
    rule_type_options = list(rule_type_mapping.keys())

    scene_prompt_mapping = get_scene_prompt_mapping()
    scene_options = list(scene_prompt_mapping.keys())

    current_dir = Path(__file__).parent
    with open(os.path.join(current_dir, 'header.html'), "r") as file:
        header = file.read()
    with gr.Blocks() as demo:
        gr.HTML(header)
        with gr.Row():
            with gr.Column():
                with gr.Column():
                    dataset_source = gr.Dropdown(
                        choices=["hugging_face", "local"],
                        value="hugging_face",
                        label="dataset [source]"
                    )
                    input_path = gr.Textbox(
                        value='chupei/format-jsonl',
                        placeholder="please input hugging_face dataset path",
                        label="input_path",
                        visible=True
                    )
                    uploaded_file = gr.File(
                        label="upload file",
                        visible=False
                    )

                    data_format = gr.Dropdown(
                        ["jsonl", "json", "plaintext", "listjson"],
                        label="data_format"
                    )
                    with gr.Row():
                        max_workers = gr.Number(
                            value=1,
                            # placeholder="",
                            label="max_workers",
                            precision=0
                        )
                        batch_size = gr.Number(
                            value=1,
                            # placeholder="",
                            label="batch_size",
                            precision=0
                        )

                    # Add the rule_type dropdown near where scene_list is defined
                    rule_type = gr.Dropdown(
                        choices=rule_type_options,
                        value=rule_type_options[0],
                        label="rule_type",
                        interactive=True
                    )
                    rule_list = gr.CheckboxGroup(
                        choices=rule_type_mapping.get(rule_type_options[0], []),
                        label="rule_list"
                    )
                    # 添加场景选择下拉框
                    scene_list = gr.Dropdown(
                        choices=scene_options,
                        value=scene_options[0],
                        label="scene_list",
                        interactive=True
                    )
                    prompt_list = gr.CheckboxGroup(
                        choices=scene_prompt_mapping.get(scene_options[0], []),
                        label="prompt_list"
                    )
                    # LLM模型名
                    model = gr.Textbox(
                        placeholder="If want to use llm, please input model, such as: deepseek-chat",
                        label="model",
                        visible=False
                    )
                    # LLM API KEY
                    key = gr.Textbox(
                        placeholder="If want to use llm, please input key, such as: 123456789012345678901234567890xx",
                        label="API KEY",
                        visible=False
                    )
                    # LLM API URL
                    api_url = gr.Textbox(
                        placeholder="If want to use llm, please input api_url, such as: https://api.deepseek.com/v1",
                        label="API URL",
                        visible=False
                    )

                    with gr.Row():
                        # 字段映射说明文本,带示例链接
                        with gr.Column():
                            gr.Markdown("Field Matching: Please input the column name of dataset in the input boxes below ( [examples](https://github.com/MigoXLab/dingo/tree/main/examples) )")

                        column_id = gr.Textbox(
                            value="",
                            placeholder="Column name of id in the input file. If exists multiple levels, use '.' separate",
                            label="column_id",
                            visible=False
                        )
                        column_prompt = gr.Textbox(
                            value="",
                            placeholder="Column name of prompt in the input file. If exists multiple levels, use '.' separate",
                            label="column_prompt",
                            visible=False
                        )
                        column_content = gr.Textbox(
                            value="content",
                            placeholder="Column name of content in the input file. If exists multiple levels, use '.' separate",
                            label="column_content",
                            visible=False
                        )
                        column_image = gr.Textbox(
                            value="",
                            placeholder="Column name of image in the input file. If exists multiple levels, use '.' separate",
                            label="column_image",
                            visible=False
                        )

                with gr.Row():
                    submit_single = gr.Button(value="Submit", interactive=True, variant="primary")

            with gr.Column():
                # 修改输出组件部分,使用Tabs
                with gr.Tabs():
                    with gr.Tab("Result Summary"):
                        summary_output = gr.Textbox(label="summary", max_lines=50)
                    with gr.Tab("Result Detail"):
                        detail_output = gr.JSON(label="detail", max_height=800)  # 使用JSON组件来更好地展示结构化数据

        dataset_source.change(
            fn=update_input_components,
            inputs=dataset_source,
            outputs=[input_path, uploaded_file]
        )

        rule_type.change(
            fn=partial(update_rule_list, rule_type_mapping),
            inputs=rule_type,
            outputs=rule_list
        )

        # 场景变化时更新prompt列表
        scene_list.change(
            fn=partial(update_prompt_list, scene_prompt_mapping),
            inputs=scene_list,
            outputs=prompt_list
        )

        prompt_list.change(
            fn=toggle_llm_fields,
            inputs=prompt_list,
            outputs=[model, key, api_url]
        )

        # column字段显示控制
        for comp in [rule_list, prompt_list]:
            comp.change(
                fn=update_column_fields,
                inputs=[rule_list, prompt_list],
                outputs=[column_id, column_prompt, column_content, column_image]
            )

        submit_single.click(
            fn=dingo_demo,
            inputs=[
                uploaded_file,
                dataset_source, data_format, input_path, max_workers, batch_size,
                column_id, column_prompt, column_content, column_image,
                rule_list, prompt_list, scene_list,
                model, key, api_url
            ],
            outputs=[summary_output, detail_output]  # 修改输出为两个组件
        )

    # 启动界面
    demo.launch()