|
from dotenv import load_dotenv |
|
|
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.tools import tool |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_tavily import TavilyExtract |
|
from youtube_transcript_api import YouTubeTranscriptApi |
|
|
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import ToolNode |
|
from langgraph.prebuilt import tools_condition |
|
import base64 |
|
import httpx |
|
|
|
|
|
load_dotenv() |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
""" |
|
Add b to a. |
|
|
|
Args: |
|
a: first int number |
|
b: second int number |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def substract(a: int, b: int) -> int: |
|
""" |
|
Subtract b from a. |
|
|
|
Args: |
|
a: first int number |
|
b: second int number |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
""" |
|
Multiply a by b. |
|
|
|
Args: |
|
a: first int number |
|
b: second int number |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
""" |
|
Divide a by b. |
|
|
|
Args: |
|
a: first int number |
|
b: second int number |
|
""" |
|
if b == 0: |
|
raise ValueError("Can't divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def mod(a: int, b: int) -> int: |
|
""" |
|
Remainder of a devided by b. |
|
|
|
Args: |
|
a: first int number |
|
b: second int number |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
""" |
|
Search Wikipedia. |
|
|
|
Args: |
|
query: what to search for |
|
""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "".join( |
|
[ |
|
f'<START source="{doc.metadata["source"]}">{doc.page_content[:1000]}<END>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
""" |
|
Search arXiv which is online archive of preprint and postprint manuscripts |
|
for different fields of science. |
|
|
|
Args: |
|
query: what to search for |
|
""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "".join( |
|
[ |
|
f'<START source="{doc.metadata["source"]}">{doc.page_content[:1000]}<END>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
""" |
|
Search WEB. |
|
|
|
Args: |
|
query: what to search for |
|
""" |
|
search_docs = TavilySearchResults(max_results=3, include_answer=True).invoke({"query": query}) |
|
formatted_search_docs = "".join( |
|
[ |
|
f'<START source="{doc["url"]}">{doc["content"][:1000]}<END>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def open_web_page(url: str) -> str: |
|
""" |
|
Open web page and get its content. |
|
|
|
Args: |
|
url: web page url in "" |
|
""" |
|
search_docs = TavilyExtract().invoke({"urls": [url]}) |
|
formatted_search_docs = f'<START source="{search_docs["results"][0]["url"]}">{search_docs["results"][0]["raw_content"][:1000]}<END>' |
|
return {"web_page_content": formatted_search_docs} |
|
|
|
@tool |
|
def youtube_transcript(url: str) -> str: |
|
""" |
|
Get transcript of YouTube video. |
|
Args: |
|
url: YouTube video url in "" |
|
""" |
|
video_id = url.partition("https://www.youtube.com/watch?v=")[2] |
|
transcript = YouTubeTranscriptApi.get_transcript(video_id) |
|
transcript_text = " ".join([item["text"] for item in transcript]) |
|
return {"youtube_transcript": transcript_text} |
|
|
|
|
|
tools = [ |
|
add, |
|
substract, |
|
multiply, |
|
divide, |
|
mod, |
|
wiki_search, |
|
arvix_search, |
|
web_search, |
|
open_web_page, |
|
youtube_transcript, |
|
] |
|
|
|
|
|
system_prompt = f""" |
|
You are a general AI assistant. I will ask you a question. |
|
First, provide a step-by-step explanation of your reasoning to arrive at the answer. |
|
Then, respond with your final answer in a single line, formatted as follows: "FINAL ANSWER: [YOUR FINAL ANSWER]". |
|
[YOUR FINAL ANSWER] should be a number, a string, or a comma-separated list of numbers and/or strings, depending on the question. |
|
If the answer is a number, do not use commas or units (e.g., $, %) unless specified. |
|
If the answer is a string, do not use articles or abbreviations (e.g., for cities), and write digits in plain text unless specified. |
|
If the answer is a comma-separated list, apply the above rules for each element based on whether it is a number or a string. |
|
""" |
|
system_message = SystemMessage(content=system_prompt) |
|
|
|
|
|
def build_graph(): |
|
"""Build LangGrapth graph of agent.""" |
|
|
|
|
|
llm = ChatOpenAI( |
|
model="gpt-4.1", |
|
temperature=0, |
|
max_retries=2 |
|
) |
|
llm_with_tools = llm.bind_tools(tools, strict=True) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node.""" |
|
return {"messages": [llm_with_tools.invoke([system_message] + state["messages"])]} |
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
agent = build_graph() |
|
|
|
question = """ |
|
Review the chess position provided in the image. It is black's turn. |
|
Provide the correct next move for black which guarantees a win. |
|
Please provide your response in algebraic notation. |
|
""" |
|
content_urls = { |
|
"image": "https://agents-course-unit4-scoring.hf.space/files/cca530fc-4052-43b2-b130-b30968d8aa44", |
|
"audio": None |
|
} |
|
|
|
|
|
content = [ |
|
{ |
|
"type": "text", |
|
"text": question |
|
} |
|
] |
|
if content_urls["image"]: |
|
image_data = base64.b64encode(httpx.get(content_urls["image"]).content).decode("utf-8") |
|
content.append( |
|
{ |
|
"type": "image", |
|
"source_type": "base64", |
|
"data": image_data, |
|
"mime_type": "image/jpeg" |
|
} |
|
) |
|
if content_urls["audio"]: |
|
audio_data = base64.b64encode(httpx.get(content_urls["audio"]).content).decode("utf-8") |
|
content.append( |
|
{ |
|
"type": "audio", |
|
"source_type": "base64", |
|
"data": audio_data, |
|
"mime_type": "audio/wav" |
|
} |
|
) |
|
messages = { |
|
"role": "user", |
|
"content": content |
|
} |
|
|
|
|
|
messages = agent.invoke({"messages": messages}) |
|
for message in messages["messages"]: |
|
message.pretty_print() |
|
|
|
answer = messages["messages"][-1].content |
|
index = answer.find("FINAL ANSWER: ") |
|
|
|
print("\n") |
|
print("="*30) |
|
if index == -1: |
|
print(answer) |
|
print(answer[index+14:]) |
|
print("="*30) |
|
|