Commit
·
e0f29bb
1
Parent(s):
6ac8934
updated agent
Browse files- agent.py +193 -71
- requirements.txt +14 -6
- system_prompt.txt +5 -22
agent.py
CHANGED
|
@@ -1,84 +1,206 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from langchain_core.tools import tool
|
| 4 |
-
from
|
| 5 |
-
import
|
| 6 |
-
import string
|
| 7 |
|
| 8 |
-
|
| 9 |
|
| 10 |
@tool
|
| 11 |
-
def
|
| 12 |
-
"""
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
@tool
|
| 16 |
-
def
|
| 17 |
-
"""
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
@tool
|
| 21 |
-
def
|
| 22 |
-
"""
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
@tool
|
| 26 |
-
def
|
| 27 |
-
"""
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
|
| 34 |
@tool
|
| 35 |
-
def
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
return builder.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LangGraph Agent"""
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 5 |
+
from langgraph.prebuilt import tools_condition
|
| 6 |
+
from langgraph.prebuilt import ToolNode
|
| 7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
+
from langchain_groq import ChatGroq
|
| 9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
| 10 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 11 |
+
from langchain_community.document_loaders import WikipediaLoader
|
| 12 |
+
from langchain_community.document_loaders import ArxivLoader
|
| 13 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 14 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
| 15 |
from langchain_core.tools import tool
|
| 16 |
+
from langchain.tools.retriever import create_retriever_tool
|
| 17 |
+
from supabase.client import Client, create_client
|
|
|
|
| 18 |
|
| 19 |
+
load_dotenv()
|
| 20 |
|
| 21 |
@tool
|
| 22 |
+
def multiply(a: int, b: int) -> int:
|
| 23 |
+
"""Multiply two numbers.
|
| 24 |
+
Args:
|
| 25 |
+
a: first int
|
| 26 |
+
b: second int
|
| 27 |
+
"""
|
| 28 |
+
return a * b
|
| 29 |
|
| 30 |
@tool
|
| 31 |
+
def add(a: int, b: int) -> int:
|
| 32 |
+
"""Add two numbers.
|
| 33 |
+
Args:
|
| 34 |
+
a: first int
|
| 35 |
+
b: second int
|
| 36 |
+
"""
|
| 37 |
+
return a + b
|
| 38 |
|
| 39 |
@tool
|
| 40 |
+
def subtract(a: int, b: int) -> int:
|
| 41 |
+
"""Subtract two numbers.
|
| 42 |
+
Args:
|
| 43 |
+
a: first int
|
| 44 |
+
b: second int
|
| 45 |
+
"""
|
| 46 |
+
return a - b
|
| 47 |
|
| 48 |
@tool
|
| 49 |
+
def divide(a: int, b: int) -> int:
|
| 50 |
+
"""Divide two numbers.
|
| 51 |
+
Args:
|
| 52 |
+
a: first int
|
| 53 |
+
b: second int
|
| 54 |
+
"""
|
| 55 |
+
if b == 0:
|
| 56 |
+
raise ValueError("Cannot divide by zero.")
|
| 57 |
+
return a / b
|
| 58 |
|
| 59 |
@tool
|
| 60 |
+
def modulus(a: int, b: int) -> int:
|
| 61 |
+
"""Get the modulus of two numbers.
|
| 62 |
+
Args:
|
| 63 |
+
a: first int
|
| 64 |
+
b: second int
|
| 65 |
+
"""
|
| 66 |
+
return a % b
|
| 67 |
+
|
| 68 |
+
@tool
|
| 69 |
+
def wiki_search(query: str) -> str:
|
| 70 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
| 71 |
+
Args:
|
| 72 |
+
query: The search query."""
|
| 73 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 74 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 75 |
+
[
|
| 76 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 77 |
+
for doc in search_docs
|
| 78 |
+
])
|
| 79 |
+
return {"wiki_results": formatted_search_docs}
|
| 80 |
+
|
| 81 |
+
@tool
|
| 82 |
+
def web_search(query: str) -> str:
|
| 83 |
+
"""Search Tavily for a query and return maximum 3 results.
|
| 84 |
+
Args:
|
| 85 |
+
query: The search query."""
|
| 86 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 87 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 88 |
+
[
|
| 89 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 90 |
+
for doc in search_docs
|
| 91 |
+
])
|
| 92 |
+
return {"web_results": formatted_search_docs}
|
| 93 |
+
|
| 94 |
+
@tool
|
| 95 |
+
def arvix_search(query: str) -> str:
|
| 96 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
| 97 |
+
Args:
|
| 98 |
+
query: The search query."""
|
| 99 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 100 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 101 |
+
[
|
| 102 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 103 |
+
for doc in search_docs
|
| 104 |
+
])
|
| 105 |
+
return {"arvix_results": formatted_search_docs}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# load the system prompt from the file
|
| 110 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 111 |
+
system_prompt = f.read()
|
| 112 |
+
|
| 113 |
+
# System message
|
| 114 |
+
sys_msg = SystemMessage(content=system_prompt)
|
| 115 |
+
|
| 116 |
+
# build a retriever
|
| 117 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
| 118 |
+
supabase: Client = create_client(
|
| 119 |
+
os.environ.get("SUPABASE_URL"),
|
| 120 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
| 121 |
+
vector_store = SupabaseVectorStore(
|
| 122 |
+
client=supabase,
|
| 123 |
+
embedding= embeddings,
|
| 124 |
+
table_name="Vector_Test",
|
| 125 |
+
query_name="match_documents_langchain",
|
| 126 |
+
)
|
| 127 |
+
create_retriever_tool = create_retriever_tool(
|
| 128 |
+
retriever=vector_store.as_retriever(),
|
| 129 |
+
name="Question Search",
|
| 130 |
+
description="A tool to retrieve similar questions from a vector store.",
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
tools = [
|
| 136 |
+
multiply,
|
| 137 |
+
add,
|
| 138 |
+
subtract,
|
| 139 |
+
divide,
|
| 140 |
+
modulus,
|
| 141 |
+
wiki_search,
|
| 142 |
+
web_search,
|
| 143 |
+
arvix_search,
|
| 144 |
+
]
|
| 145 |
+
|
| 146 |
+
# Build graph function
|
| 147 |
+
def build_graph(provider: str = "groq"):
|
| 148 |
+
"""Build the graph"""
|
| 149 |
+
# Load environment variables from .env file
|
| 150 |
+
if provider == "google":
|
| 151 |
+
# Google Gemini
|
| 152 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
| 153 |
+
elif provider == "groq":
|
| 154 |
+
# Groq https://console.groq.com/docs/models
|
| 155 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
| 156 |
+
elif provider == "huggingface":
|
| 157 |
+
# TODO: Add huggingface endpoint
|
| 158 |
+
llm = ChatHuggingFace(
|
| 159 |
+
llm=HuggingFaceEndpoint(
|
| 160 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
| 161 |
+
temperature=0,
|
| 162 |
+
),
|
| 163 |
+
)
|
| 164 |
+
else:
|
| 165 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
| 166 |
+
# Bind tools to LLM
|
| 167 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 168 |
+
|
| 169 |
+
# Node
|
| 170 |
+
def assistant(state: MessagesState):
|
| 171 |
+
"""Assistant node"""
|
| 172 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
| 173 |
+
|
| 174 |
+
def retriever(state: MessagesState):
|
| 175 |
+
"""Retriever node"""
|
| 176 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
| 177 |
+
example_msg = HumanMessage(
|
| 178 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
| 179 |
+
)
|
| 180 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
| 181 |
+
|
| 182 |
+
builder = StateGraph(MessagesState)
|
| 183 |
+
builder.add_node("retriever", retriever)
|
| 184 |
+
builder.add_node("assistant", assistant)
|
| 185 |
+
builder.add_node("tools", ToolNode(tools))
|
| 186 |
+
builder.add_edge(START, "retriever")
|
| 187 |
+
builder.add_edge("retriever", "assistant")
|
| 188 |
+
builder.add_conditional_edges(
|
| 189 |
+
"assistant",
|
| 190 |
+
tools_condition,
|
| 191 |
+
)
|
| 192 |
+
builder.add_edge("tools", "assistant")
|
| 193 |
+
|
| 194 |
+
# Compile graph
|
| 195 |
return builder.compile()
|
| 196 |
+
|
| 197 |
+
# test
|
| 198 |
+
if __name__ == "__main__":
|
| 199 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
| 200 |
+
# Build the graph
|
| 201 |
+
graph = build_graph(provider="groq")
|
| 202 |
+
# Run the graph
|
| 203 |
+
messages = [HumanMessage(content=question)]
|
| 204 |
+
messages = graph.invoke({"messages": messages})
|
| 205 |
+
for m in messages["messages"]:
|
| 206 |
+
m.pretty_print()
|
requirements.txt
CHANGED
|
@@ -1,10 +1,18 @@
|
|
| 1 |
gradio
|
| 2 |
-
pandas
|
| 3 |
requests
|
| 4 |
-
langchain-core
|
| 5 |
-
langgraph
|
| 6 |
langchain
|
| 7 |
langchain-community
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
|
|
|
| 2 |
requests
|
|
|
|
|
|
|
| 3 |
langchain
|
| 4 |
langchain-community
|
| 5 |
+
langchain-core
|
| 6 |
+
langchain-google-genai
|
| 7 |
+
langchain-huggingface
|
| 8 |
+
langchain-groq
|
| 9 |
+
langchain-tavily
|
| 10 |
+
langchain-chroma
|
| 11 |
+
langgraph
|
| 12 |
+
huggingface_hub
|
| 13 |
+
supabase
|
| 14 |
+
arxiv
|
| 15 |
+
pymupdf
|
| 16 |
+
wikipedia
|
| 17 |
+
pgvector
|
| 18 |
+
python-dotenv
|
system_prompt.txt
CHANGED
|
@@ -1,22 +1,5 @@
|
|
| 1 |
-
You are a
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
- NEVER output more than one answer.
|
| 7 |
-
- When you reach the final answer, return it as:
|
| 8 |
-
final_answer("...your answer...")
|
| 9 |
-
- Use tools like `open_file_as_text`, `extract_number`, or `reverse_text` where applicable.
|
| 10 |
-
- If the task involves a file, use the given file_name — not one mentioned in the question.
|
| 11 |
-
- Format numbers without commas or symbols (e.g., 1739, not $1,739).
|
| 12 |
-
- Format comma-separated lists with a single space after each comma.
|
| 13 |
-
- When extracting or reversing text, always preserve punctuation unless instructed otherwise.
|
| 14 |
-
|
| 15 |
-
Example:
|
| 16 |
-
Q: What is the reverse of "good job"?
|
| 17 |
-
A: final_answer("boj doog")
|
| 18 |
-
|
| 19 |
-
Q: What is the third number listed in the attached file?
|
| 20 |
-
A: final_answer("42")
|
| 21 |
-
|
| 22 |
-
Be brief. Be exact. Use tools. Output only the final answer in the correct format.
|
|
|
|
| 1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
| 2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|