File size: 4,358 Bytes
123d5ff
 
 
cabf258
123d5ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pandas as pd
import streamlit as st

st.title("Dump Core Parsing")

# Initialize a list to hold the extracted data
data_global_cell_id = []
data_la_cell_name = []
data_wcdma_service_area_number = []
data_wcdma_service_area_name = []


# Create a Streamlit file uploader
uploaded_files = st.file_uploader(
    "Upload Core Creation dump files", type=["txt"], accept_multiple_files=True
)


# Process each uploaded file
if uploaded_files:

    all_data_global_cell_id = []
    all_data_la_cell_name = []
    all_data_wcdma_service_area_number = []
    all_data_wcdma_service_area_name = []

    for file in uploaded_files:
        # Read the content of the file

        content = file.read().decode("utf-8").splitlines()
        data_global_cell_id = []
        data_la_cell_name = []
        data_wcdma_service_area_number = []
        data_wcdma_service_area_name = []

        # Loop through each line in the file
        for line in content:
            if "Global cell ID" in line:
                data_global_cell_id.append([line.split("=")[1].strip()])
            elif "LA cell name" in line:
                data_la_cell_name.append([line.split("=")[1].strip()])
            elif "3G service area number" in line:
                data_wcdma_service_area_number.append([line.split("=")[1].strip()])
            elif "3G service area name" in line:
                data_wcdma_service_area_name.append([line.split("=")[1].strip()])

        # Append the extracted data for the current file to the overall lists
        all_data_global_cell_id.extend(data_global_cell_id)
        all_data_la_cell_name.extend(data_la_cell_name)
        all_data_wcdma_service_area_number.extend(data_wcdma_service_area_number)
        all_data_wcdma_service_area_name.extend(data_wcdma_service_area_name)

    # Create a DataFrame from the extracted data
    df_global_cell_id = pd.DataFrame(
        all_data_global_cell_id, columns=["Global cell ID"]
    )
    df_la_cell_name = pd.DataFrame(all_data_la_cell_name, columns=["LA cell name"])
    df_wcdma_service_area_number = pd.DataFrame(
        all_data_wcdma_service_area_number, columns=["3G service area number"]
    )
    df_wcdma_service_area_name = pd.DataFrame(
        all_data_wcdma_service_area_name, columns=["3G service area name"]
    )

    # add index column df_global_cell_id and df_la_cell_name  and dfa_wcdma_service_area_numbera and df_wcdma_service_area_name
    df_global_cell_id.insert(0, "index", range(0, len(df_global_cell_id)))
    df_la_cell_name.insert(0, "index", range(0, len(df_la_cell_name)))
    df_wcdma_service_area_number.insert(
        0, "index", range(0, len(df_wcdma_service_area_number))
    )
    df_wcdma_service_area_name.insert(
        0, "index", range(0, len(df_wcdma_service_area_name))
    )

    # Merge global_cell_id and la_cell_name on index
    df_la_cell_name = df_la_cell_name.merge(df_global_cell_id, on="index")

    # merge wcdma_service_area_number and wcdma_service_area_name on index
    df_wcdma_service_area_name = df_wcdma_service_area_name.merge(
        df_wcdma_service_area_number, on="index"
    )

    df_la_cell_name["LAC_ID"] = df_la_cell_name["Global cell ID"].str[5:]
    df_wcdma_service_area_name["LAC_ID"] = df_wcdma_service_area_name[
        "3G service area number"
    ].str[5:]
    df_la_cell_name["LAC"] = df_la_cell_name["LAC_ID"].str[:4]
    df_la_cell_name["Cell ID"] = df_la_cell_name["LAC_ID"].str[4:]
    df_wcdma_service_area_name["LAC"] = df_wcdma_service_area_name["LAC_ID"].str[:4]
    df_wcdma_service_area_name["Cell ID"] = df_wcdma_service_area_name["LAC_ID"].str[4:]

    # convert LAC to from HEXadecimal to DECimal
    df_la_cell_name["LAC_DECIMAL"] = df_la_cell_name["LAC"].apply(lambda x: int(x, 16))
    df_la_cell_name["Cell_ID_DECIMAL"] = df_la_cell_name["Cell ID"].apply(
        lambda x: int(x, 16)
    )
    df_wcdma_service_area_name["LAC_DECIMAL"] = df_wcdma_service_area_name["LAC"].apply(
        lambda x: int(x, 16)
    )
    df_wcdma_service_area_name["Cell_ID_DECIMAL"] = df_wcdma_service_area_name[
        "Cell ID"
    ].apply(lambda x: int(x, 16))

    df_la_cell_name = df_la_cell_name.reset_index(drop=True)

    # Display the DataFrame
    st.subheader("2G CORE DUMP DATA")
    st.write(df_la_cell_name)
    st.subheader("3G CORE DUMP DATA")
    st.write(df_wcdma_service_area_name)