File size: 8,748 Bytes
b29ed17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import pandas as pd

from utils.kpi_analysis_utils import (
    analyze_fails_kpi,
    cell_availability_analysis,
    combine_comments,
    create_daily_date,
    create_dfs_per_kpi,
    kpi_naming_cleaning,
    summarize_fails_comments,
)

tx_comments_mapping = {
    "iub_frameloss exceeded threshold": "iub frameloss",
    "iub_frameloss exceeded threshold, hsdpa_congestion_rate_iub exceeded threshold": "iub frameloss and hsdpa iub congestion",
    "hsdpa_congestion_rate_iub exceeded threshold": "hsdpa iub congestion",
}
operational_comments_mapping = {
    "Down Site": "Down Cell",
    "iub frameloss, instability": "Availability and TX issues",
    "iub frameloss and hsdpa iub congestion, Availability OK": "TX issues",
    "iub frameloss, Availability OK": "TX issues",
    "critical instability": "Availability issues",
    "iub frameloss, critical instability": "Availability and TX issues",
    "iub frameloss and hsdpa iub congestion, instability": "Availability and TX issues",
    "Availability OK": "Site OK",
    "hsdpa iub congestion, instability": "Availability and TX issues",
    "instability": "Availability issues",
    "hsdpa iub congestion, Availability OK": "TX issues",
    "iub frameloss and hsdpa iub congestion, critical instability": "Availability and TX issues",
    "hsdpa iub congestion, critical instability": "Availability and TX issues",
}

KPI_COLUMNS = [
    "WCEL_name",
    "date",
    "Cell_Availability_excluding_blocked_by_user_state_BLU",
    "Total_CS_traffic_Erl",
    "HSDPA_TRAFFIC_VOLUME",
    "HSDPA_USER_THROUGHPUT",
    "Max_simult_HSDPA_users",
    "IUB_LOSS_CC_FRAME_LOSS_IND_M1022C71",
    "HSDPA_congestion_rate_in_Iub",
    "rrc_conn_stp_fail_ac_M1001C3",
    "RRC_CONN_STP_FAIL_AC_UL_M1001C731",
    "RRC_CONN_STP_FAIL_AC_DL_M1001C732",
    "RRC_CONN_STP_FAIL_AC_COD_M1001C733",
    "rrc_conn_stp_fail_bts_M1001C4",
]


class WcelCapacity:
    final_results: pd.DataFrame = None


def wcel_kpi_analysis(
    df: pd.DataFrame,
    num_last_days: int,
    num_threshold_days: int,
    availability_threshold: int,
    iub_frameloss_threshold: int,
    hsdpa_congestion_rate_iub_threshold: int,
    fails_treshold: int,
) -> pd.DataFrame:
    pivoted_kpi_dfs = create_dfs_per_kpi(
        df=df,
        pivot_date_column="date",
        pivot_name_column="WCEL_name",
        kpi_columns_from=2,
    )
    cell_availability_df = cell_availability_analysis(
        df=pivoted_kpi_dfs["Cell_Availability_excluding_blocked_by_user_state_BLU"],
        days=num_last_days,
        availability_threshold=availability_threshold,
    )

    # Trafics, throughput and max users
    trafic_cs_df = pivoted_kpi_dfs["Total_CS_traffic_Erl"]
    hsdpa_traffic_df = pivoted_kpi_dfs["HSDPA_TRAFFIC_VOLUME"]
    hsdpa_user_throughput_df = pivoted_kpi_dfs["HSDPA_USER_THROUGHPUT"]
    max_simult_hsdpa_users_df = pivoted_kpi_dfs["Max_simult_HSDPA_users"]
    # Add Max of Trafics, throughput and max users
    trafic_cs_df["max_traffic_cs"] = trafic_cs_df.max(axis=1)
    hsdpa_traffic_df["max_traffic_dl"] = hsdpa_traffic_df.max(axis=1)
    hsdpa_user_throughput_df["max_dl_throughput"] = hsdpa_user_throughput_df.max(axis=1)
    max_simult_hsdpa_users_df["max_users"] = max_simult_hsdpa_users_df.max(axis=1)
    # add average of Trafics, throughput and max users
    trafic_cs_df["avg_traffic_cs"] = trafic_cs_df.mean(axis=1)
    hsdpa_traffic_df["avg_traffic_dl"] = hsdpa_traffic_df.mean(axis=1)
    hsdpa_user_throughput_df["avg_dl_throughput"] = hsdpa_user_throughput_df.mean(
        axis=1
    )
    max_simult_hsdpa_users_df["avg_users"] = max_simult_hsdpa_users_df.mean(axis=1)

    # TX Congestion
    iub_frameloss_df = pivoted_kpi_dfs["IUB_LOSS_CC_FRAME_LOSS_IND_M1022C71"]
    hsdpa_congestion_rate_iub_df = pivoted_kpi_dfs["HSDPA_congestion_rate_in_Iub"]

    iub_frameloss_df = analyze_fails_kpi(
        df=iub_frameloss_df,
        number_of_kpi_days=num_last_days,
        number_of_threshold_days=num_threshold_days,
        kpi_threshold=iub_frameloss_threshold,
        kpi_column_name="iub_frameloss",
    )
    hsdpa_congestion_rate_iub_df = analyze_fails_kpi(
        df=hsdpa_congestion_rate_iub_df,
        number_of_kpi_days=num_last_days,
        number_of_threshold_days=num_threshold_days,
        kpi_threshold=hsdpa_congestion_rate_iub_threshold,
        kpi_column_name="hsdpa_congestion_rate_iub",
    )

    # Fails
    rrc_conn_stp_fail_ac_df = analyze_fails_kpi(
        df=pivoted_kpi_dfs["rrc_conn_stp_fail_ac_M1001C3"],
        number_of_kpi_days=num_last_days,
        number_of_threshold_days=num_threshold_days,
        kpi_threshold=fails_treshold,
        kpi_column_name="rrc_fail_ac",
    )
    rrc_conn_stp_fail_ac_ul_df = analyze_fails_kpi(
        df=pivoted_kpi_dfs["RRC_CONN_STP_FAIL_AC_UL_M1001C731"],
        number_of_kpi_days=num_last_days,
        number_of_threshold_days=num_threshold_days,
        kpi_threshold=fails_treshold,
        kpi_column_name="rrc_fail_ac_ul",
    )
    rrc_conn_stp_fail_ac_dl_df = analyze_fails_kpi(
        df=pivoted_kpi_dfs["RRC_CONN_STP_FAIL_AC_DL_M1001C732"],
        number_of_kpi_days=num_last_days,
        number_of_threshold_days=num_threshold_days,
        kpi_threshold=fails_treshold,
        kpi_column_name="rrc_fail_ac_dl",
    )
    rrc_conn_stp_fail_ac_cod_df = analyze_fails_kpi(
        df=pivoted_kpi_dfs["RRC_CONN_STP_FAIL_AC_COD_M1001C733"],
        number_of_kpi_days=num_last_days,
        number_of_threshold_days=num_threshold_days,
        kpi_threshold=fails_treshold,
        kpi_column_name="rrc_fail_code",
    )
    rrc_conn_stp_fail_bts_df = analyze_fails_kpi(
        df=pivoted_kpi_dfs["rrc_conn_stp_fail_bts_M1001C4"],
        number_of_kpi_days=num_last_days,
        number_of_threshold_days=num_threshold_days,
        kpi_threshold=fails_treshold,
        kpi_column_name="rrc_fail_bts",
    )

    kpi_df = pd.concat(
        [
            cell_availability_df,
            trafic_cs_df,
            hsdpa_traffic_df,
            hsdpa_user_throughput_df,
            max_simult_hsdpa_users_df,
            iub_frameloss_df,
            hsdpa_congestion_rate_iub_df,
            rrc_conn_stp_fail_ac_df,
            rrc_conn_stp_fail_ac_ul_df,
            rrc_conn_stp_fail_ac_dl_df,
            rrc_conn_stp_fail_ac_cod_df,
            rrc_conn_stp_fail_bts_df,
        ],
        axis=1,
    )
    kpi_df = kpi_df.reset_index()

    kpi_df = combine_comments(
        kpi_df,
        "iub_frameloss_comment",
        "hsdpa_congestion_rate_iub_comment",
        new_column="tx_congestion_comments",
    )
    kpi_df["tx_congestion_comments"] = kpi_df["tx_congestion_comments"].apply(
        lambda x: tx_comments_mapping.get(x, x)
    )

    kpi_df = combine_comments(
        kpi_df,
        "tx_congestion_comments",
        "availability_comment_daily",
        new_column="operational_comments",
    )
    kpi_df["operational_comments"] = kpi_df["operational_comments"].apply(
        lambda x: operational_comments_mapping.get(x, x)
    )
    kpi_df = combine_comments(
        kpi_df,
        "rrc_fail_ac_comment",
        "rrc_fail_ac_ul_comment",
        "rrc_fail_ac_dl_comment",
        "rrc_fail_code_comment",
        "rrc_fail_bts_comment",
        new_column="fails_comments",
    )
    kpi_df["fails_comments"] = kpi_df["fails_comments"].apply(summarize_fails_comments)
    return [kpi_df]


def load_and_process_wcel_capacity_data(
    uploaded_file: pd.DataFrame,
    num_last_days: int,
    num_threshold_days: int,
    availability_threshold: int,
    iub_frameloss_threshold: int,
    hsdpa_congestion_rate_iub_threshold: int,
    fails_treshold: int,
) -> pd.DataFrame:
    """
    Load and process data for WCEL capacity analysis.

    Args:
        uploaded_file: Uploaded CSV file containing WCEL capacity data
        num_last_days: Number of days for analysis
        num_threshold_days: Minimum days above threshold to flag for upgrade
        availability_threshold: Utilization threshold percentage for flagging
        iub_frameloss_threshold: Utilization threshold percentage for flagging
        hsdpa_congestion_rate_iub_threshold: Utilization threshold percentage for flagging
        fails_treshold: Utilization threshold percentage for flagging

    Returns:
        Processed DataFrame with WCEL capacity analysis results
    """
    # Load data
    df = pd.read_csv(uploaded_file, delimiter=";")
    df = kpi_naming_cleaning(df)
    df = create_daily_date(df)
    df = df[KPI_COLUMNS]
    df = wcel_kpi_analysis(
        df,
        num_last_days,
        num_threshold_days,
        availability_threshold,
        iub_frameloss_threshold,
        hsdpa_congestion_rate_iub_threshold,
        fails_treshold,
    )
    return df