File size: 7,191 Bytes
7860c2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import shutil
import tempfile
import pandas as pd
import streamlit as st
import xlwings as xw
from pyxlsb import open_workbook
# === Core Logic ===
def find_header_row(df, keyword="Dist_Name"):
for i in range(min(20, len(df))):
row = df.iloc[i].astype(str).str.strip().str.lower()
if any(keyword.lower() in str(cell) for cell in row):
return i
raise ValueError(f"No row with '{keyword}' found.")
def read_xlsb_with_pyxlsb(file, sheet):
rows = []
with open_workbook(file) as wb:
with wb.get_sheet(sheet) as s:
for row in s.rows():
rows.append([item.v for item in row])
return pd.DataFrame(rows)
def read_sheet_fallback(file, sheet):
try:
return read_xlsb_with_pyxlsb(file, sheet)
except Exception:
try:
app = xw.App(visible=False)
book = app.books.open(file)
sht = book.sheets[sheet]
df = sht.used_range.options(pd.DataFrame, header=False, index=False).value
book.close()
app.quit()
return df
except Exception as e2:
raise RuntimeError(f"xlwings failed: {e2}")
def load_clean_df(file, sheet):
df_raw = read_sheet_fallback(file, sheet)
header_row = find_header_row(df_raw)
df_raw.columns = df_raw.iloc[header_row]
df = df_raw.drop(index=list(range(header_row + 1)))
df.columns = [str(c).strip().replace("\xa0", " ") for c in df.columns]
df = df.astype(str).apply(lambda col: col.str.strip())
return df
def detect_dist_col(columns):
for col in columns:
if "dist" in col.lower() and "name" in col.lower():
return col
raise ValueError("Dist_Name column not found.")
def compare_dumps(
old_file,
new_file,
mo_list,
output_dir,
# progress_callback=None
):
os.makedirs(output_dir, exist_ok=True)
# Friendly column labels based on file names
old_label = os.path.basename(old_file)
new_label = os.path.basename(new_file)
total_changes = 0
logs = []
for i, sheet_name in enumerate(mo_list):
try:
df_old = load_clean_df(old_file, sheet_name)
df_new = load_clean_df(new_file, sheet_name)
dist_col_old = detect_dist_col(df_old.columns)
dist_col_new = detect_dist_col(df_new.columns)
df_old = df_old[df_old[dist_col_old].notna()].set_index(dist_col_old)
df_new = df_new[df_new[dist_col_new].notna()].set_index(dist_col_new)
common = df_old.index.intersection(df_new.index)
df_old_common = df_old.loc[common]
df_new_common = df_new.loc[common]
mask = (df_old_common != df_new_common) & ~(
df_old_common.isna() & df_new_common.isna()
)
changes = []
for dist in mask.index:
for param in mask.columns[mask.loc[dist]]:
if param.strip().lower() == "file_name":
continue
changes.append(
{
"Dist_Name": dist,
"Parameter": param,
old_label: df_old_common.loc[dist, param],
new_label: df_new_common.loc[dist, param],
}
)
df_changes = pd.DataFrame(changes)
if not df_changes.empty:
output_path = os.path.join(output_dir, f"{sheet_name}_differences.xlsx")
df_changes.to_excel(output_path, index=False)
logs.append(f"{len(df_changes)} changes in {sheet_name}")
total_changes += len(df_changes)
else:
logs.append(f"No changes in {sheet_name}")
except Exception as e:
logs.append(f"Error in {sheet_name}: {e}")
# if progress_callback:
# progress_callback((i + 1) / len(mo_list))
return total_changes, logs
# === Streamlit UI ===
st.title("📊 Dump Compare Tool")
old_file = st.file_uploader("Upload Old Dump (.xlsb)", type=["xlsb"], key="old")
new_file = st.file_uploader("Upload New Dump (.xlsb)", type=["xlsb"], key="new")
# Determine common sheet names available in BOTH uploaded dumps and let the user pick
common_sheets: list[str] = []
selected_sheets: list[str] = []
if old_file and new_file:
import tempfile as _tmp
from pyxlsb import open_workbook as _open_wb
def _get_sheet_names(uploaded_file) -> list[str]:
"""Return sheet names from an `st.uploaded_file` object."""
with _tmp.NamedTemporaryFile(delete=False, suffix=".xlsb") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
try:
with _open_wb(tmp_path) as wb:
# `wb.sheets` in pyxlsb already returns a list of sheet names (str)
return list(wb.sheets)
finally:
os.remove(tmp_path)
common_sheets = sorted(
set(_get_sheet_names(old_file)).intersection(_get_sheet_names(new_file))
)
if common_sheets:
selected_sheets = st.multiselect(
"MO Sheet Names (choose one or more)",
common_sheets,
default=common_sheets[:1], # select only the first sheet by default
)
else:
st.warning("No common sheet names found between the two files.")
output_dir = "comparison_output" # fixed output folder name
if st.button("Run Comparison", type="primary", use_container_width=True):
if not all([old_file, new_file]) or not selected_sheets:
st.warning("Please upload both files and select at least one common sheet.")
else:
mo_list = selected_sheets
# Reset file pointers because they may have been consumed while reading sheet names
old_file.seek(0)
new_file.seek(0)
with st.spinner("Comparing dumps..."):
with tempfile.TemporaryDirectory() as tmpdir:
output_path = os.path.join(tmpdir, output_dir)
old_path = os.path.join(tmpdir, "old.xlsb")
new_path = os.path.join(tmpdir, "new.xlsb")
with open(old_path, "wb") as f:
f.write(old_file.read())
with open(new_path, "wb") as f:
f.write(new_file.read())
# progress_bar = st.progress(0.0)
# def update_progress(pct):
# progress_bar.progress(pct)
total, logs = compare_dumps(old_path, new_path, mo_list, output_path)
st.success(f"✅ Comparison completed. Total changes: {total}")
# Zip and offer download
shutil.make_archive(output_path, "zip", output_path)
with open(f"{output_path}.zip", "rb") as f:
st.download_button(
"Download Results (.zip)",
f,
file_name="differences.zip",
mime="application/zip",
type="primary",
on_click="ignore",
)
|