add site_band_config
Browse files- README.md +1 -0
- apps/import_physical_db.py +3 -1
- queries/process_gsm.py +19 -2
- queries/process_lte.py +5 -0
- queries/process_wcdma.py +14 -0
- utils/config_band.py +31 -0
- utils/utils_vars.py +9 -1
README.md
CHANGED
|
@@ -39,6 +39,7 @@ You can access the hosted version of the app at [https://davmelchi-db-query.hf.s
|
|
| 39 |
- [x] Add option to download Neighbors database
|
| 40 |
- [x] Add page to update physical db
|
| 41 |
- [x] Add Core dump checking App
|
|
|
|
| 42 |
- [ ] Add dashboards for each database (Count of NE)
|
| 43 |
- [ ] Add the ability to select columns
|
| 44 |
- [ ] Error handling
|
|
|
|
| 39 |
- [x] Add option to download Neighbors database
|
| 40 |
- [x] Add page to update physical db
|
| 41 |
- [x] Add Core dump checking App
|
| 42 |
+
- [x] Add site config band in database
|
| 43 |
- [ ] Add dashboards for each database (Count of NE)
|
| 44 |
- [ ] Add the ability to select columns
|
| 45 |
- [ ] Error handling
|
apps/import_physical_db.py
CHANGED
|
@@ -39,7 +39,9 @@ if uploaded_file is not None:
|
|
| 39 |
elif len(df) <= 500:
|
| 40 |
st.error("Error: The file must contain more than 500 rows.")
|
| 41 |
else:
|
| 42 |
-
st.success(
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# Display the DataFrame
|
| 45 |
st.write(df)
|
|
|
|
| 39 |
elif len(df) <= 500:
|
| 40 |
st.error("Error: The file must contain more than 500 rows.")
|
| 41 |
else:
|
| 42 |
+
st.success(
|
| 43 |
+
"File successfully validated. Click on the Save button to save the new physical database file."
|
| 44 |
+
)
|
| 45 |
|
| 46 |
# Display the DataFrame
|
| 47 |
st.write(df)
|
queries/process_gsm.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
from queries.process_trx import process_trx_data
|
|
|
|
| 4 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 5 |
from utils.utils_vars import UtilsVars
|
| 6 |
|
|
@@ -43,6 +44,7 @@ BTS_COLUMNS = [
|
|
| 43 |
"band_frequence",
|
| 44 |
"type_cellule",
|
| 45 |
"configuration_schema",
|
|
|
|
| 46 |
]
|
| 47 |
|
| 48 |
BCF_COLUMNS = [
|
|
@@ -80,11 +82,16 @@ def process_gsm_data(file_path: str):
|
|
| 80 |
df_bts["sectorId"].map(UtilsVars.sector_mapping).fillna(df_bts["sectorId"])
|
| 81 |
)
|
| 82 |
df_bts["band_frequence"] = (
|
| 83 |
-
df_bts["frequencyBandInUse"]
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
df_bts["type_cellule"] = (
|
| 86 |
df_bts["frequencyBandInUse"].map(UtilsVars.type_cellule).fillna("not found")
|
| 87 |
)
|
|
|
|
|
|
|
|
|
|
| 88 |
df_bts["configuration_schema"] = (
|
| 89 |
df_bts["frequencyBandInUse"]
|
| 90 |
.map(UtilsVars.configuration_schema)
|
|
@@ -107,15 +114,19 @@ def process_gsm_data(file_path: str):
|
|
| 107 |
|
| 108 |
df_trx = process_trx_data(file_path)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
| 110 |
# Merge dataframes
|
| 111 |
df_bts_bcf = pd.merge(df_bts, df_bcf, on="ID_BCF", how="left")
|
| 112 |
df_2g = pd.merge(df_bts_bcf, df_trx, on="ID_BTS", how="left")
|
|
|
|
| 113 |
|
| 114 |
df_physical_db = UtilsVars.physisal_db
|
| 115 |
df_2g = pd.merge(df_2g, df_physical_db, on="Code_Sector", how="left")
|
| 116 |
|
| 117 |
# Save dataframes
|
| 118 |
-
# save_dataframe(
|
| 119 |
# save_dataframe(df_bcf, "bcf")
|
| 120 |
# save_dataframe(df_trx, "trx")
|
| 121 |
# df_2g2 = save_dataframe(df_2g, "2g")
|
|
@@ -127,5 +138,11 @@ def process_gsm_data(file_path: str):
|
|
| 127 |
|
| 128 |
|
| 129 |
def process_gsm_data_to_excel(file_path: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
gsm_dfs = process_gsm_data(file_path)
|
| 131 |
UtilsVars.final_gsm_database = convert_dfs([gsm_dfs], ["GSM"])
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
from queries.process_trx import process_trx_data
|
| 4 |
+
from utils.config_band import config_band
|
| 5 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 6 |
from utils.utils_vars import UtilsVars
|
| 7 |
|
|
|
|
| 44 |
"band_frequence",
|
| 45 |
"type_cellule",
|
| 46 |
"configuration_schema",
|
| 47 |
+
"band",
|
| 48 |
]
|
| 49 |
|
| 50 |
BCF_COLUMNS = [
|
|
|
|
| 82 |
df_bts["sectorId"].map(UtilsVars.sector_mapping).fillna(df_bts["sectorId"])
|
| 83 |
)
|
| 84 |
df_bts["band_frequence"] = (
|
| 85 |
+
df_bts["frequencyBandInUse"]
|
| 86 |
+
.map(UtilsVars.oml_band_frequence)
|
| 87 |
+
.fillna("not found")
|
| 88 |
)
|
| 89 |
df_bts["type_cellule"] = (
|
| 90 |
df_bts["frequencyBandInUse"].map(UtilsVars.type_cellule).fillna("not found")
|
| 91 |
)
|
| 92 |
+
df_bts["band"] = (
|
| 93 |
+
df_bts["frequencyBandInUse"].map(UtilsVars.gsm_band).fillna("not found")
|
| 94 |
+
)
|
| 95 |
df_bts["configuration_schema"] = (
|
| 96 |
df_bts["frequencyBandInUse"]
|
| 97 |
.map(UtilsVars.configuration_schema)
|
|
|
|
| 114 |
|
| 115 |
df_trx = process_trx_data(file_path)
|
| 116 |
|
| 117 |
+
# create band dataframe
|
| 118 |
+
df_band = config_band(df_bts)
|
| 119 |
+
|
| 120 |
# Merge dataframes
|
| 121 |
df_bts_bcf = pd.merge(df_bts, df_bcf, on="ID_BCF", how="left")
|
| 122 |
df_2g = pd.merge(df_bts_bcf, df_trx, on="ID_BTS", how="left")
|
| 123 |
+
df_2g = pd.merge(df_2g, df_band, on="code", how="left")
|
| 124 |
|
| 125 |
df_physical_db = UtilsVars.physisal_db
|
| 126 |
df_2g = pd.merge(df_2g, df_physical_db, on="Code_Sector", how="left")
|
| 127 |
|
| 128 |
# Save dataframes
|
| 129 |
+
# save_dataframe(df_band, "BAND")
|
| 130 |
# save_dataframe(df_bcf, "bcf")
|
| 131 |
# save_dataframe(df_trx, "trx")
|
| 132 |
# df_2g2 = save_dataframe(df_2g, "2g")
|
|
|
|
| 138 |
|
| 139 |
|
| 140 |
def process_gsm_data_to_excel(file_path: str):
|
| 141 |
+
"""
|
| 142 |
+
Process data from the specified file path and save it to a excel file.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
file_path (str): The path to the file.
|
| 146 |
+
"""
|
| 147 |
gsm_dfs = process_gsm_data(file_path)
|
| 148 |
UtilsVars.final_gsm_database = convert_dfs([gsm_dfs], ["GSM"])
|
queries/process_lte.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
|
|
|
|
| 4 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 5 |
from utils.utils_vars import UtilsVars, get_band
|
| 6 |
|
|
@@ -94,6 +95,9 @@ def process_lte_data(file_path: str):
|
|
| 94 |
df_lncel["band_type"] = np.where(df_lncel["band"] == "L2300", "TDD", "FDD")
|
| 95 |
df_lncel = df_lncel[LNCEL_COLUMNS]
|
| 96 |
|
|
|
|
|
|
|
|
|
|
| 97 |
# Process LNBTS data
|
| 98 |
df_lnbts = dfs["LNBTS"]
|
| 99 |
df_lnbts.columns = df_lnbts.columns.str.replace(r"[ ]", "", regex=True)
|
|
@@ -105,6 +109,7 @@ def process_lte_data(file_path: str):
|
|
| 105 |
|
| 106 |
# Merge dataframes
|
| 107 |
df_lncel_lnbts = pd.merge(df_lncel, df_lnbts, on="ID_LNBTS", how="left")
|
|
|
|
| 108 |
|
| 109 |
df_physical_db = UtilsVars.physisal_db
|
| 110 |
df_physical_db = df_physical_db[
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
+
from utils.config_band import config_band
|
| 5 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 6 |
from utils.utils_vars import UtilsVars, get_band
|
| 7 |
|
|
|
|
| 95 |
df_lncel["band_type"] = np.where(df_lncel["band"] == "L2300", "TDD", "FDD")
|
| 96 |
df_lncel = df_lncel[LNCEL_COLUMNS]
|
| 97 |
|
| 98 |
+
# create band dataframe
|
| 99 |
+
df_band = config_band(df_lncel)
|
| 100 |
+
|
| 101 |
# Process LNBTS data
|
| 102 |
df_lnbts = dfs["LNBTS"]
|
| 103 |
df_lnbts.columns = df_lnbts.columns.str.replace(r"[ ]", "", regex=True)
|
|
|
|
| 109 |
|
| 110 |
# Merge dataframes
|
| 111 |
df_lncel_lnbts = pd.merge(df_lncel, df_lnbts, on="ID_LNBTS", how="left")
|
| 112 |
+
df_lncel_lnbts = pd.merge(df_lncel_lnbts, df_band, on="code", how="left")
|
| 113 |
|
| 114 |
df_physical_db = UtilsVars.physisal_db
|
| 115 |
df_physical_db = df_physical_db[
|
queries/process_wcdma.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
|
|
|
|
| 3 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 4 |
from utils.extract_code import extract_code_from_mrbts
|
| 5 |
from utils.utils_vars import UtilsVars
|
|
@@ -39,6 +40,7 @@ WCEL_COLUMNS = [
|
|
| 39 |
"Code_Sector",
|
| 40 |
"code_wcel",
|
| 41 |
"porteuse",
|
|
|
|
| 42 |
]
|
| 43 |
|
| 44 |
WBTS_COLUMNS = [
|
|
@@ -96,6 +98,11 @@ def process_wcdma_data(file_path: str):
|
|
| 96 |
df_wcel["porteuse"] = (
|
| 97 |
df_wcel["UARFCN"].map(UtilsVars.porteuse_mapping).fillna("not found")
|
| 98 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
# Process WBTS data
|
| 100 |
df_wbts = dfs["WBTS"]
|
| 101 |
df_wbts.columns = df_wbts.columns.str.replace(r"[ ]", "", regex=True)
|
|
@@ -120,6 +127,7 @@ def process_wcdma_data(file_path: str):
|
|
| 120 |
df_3g = df_3g[WCEL_COLUMNS]
|
| 121 |
|
| 122 |
df_physical_db = UtilsVars.physisal_db
|
|
|
|
| 123 |
df_3g = pd.merge(df_3g, df_physical_db, on="Code_Sector", how="left")
|
| 124 |
# Save dataframes
|
| 125 |
# save_dataframe(df_wcel, "wcel")
|
|
@@ -136,5 +144,11 @@ def process_wcdma_data(file_path: str):
|
|
| 136 |
|
| 137 |
|
| 138 |
def process_wcdma_data_to_excel(file_path: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
wcdma_dfs = process_wcdma_data(file_path)
|
| 140 |
UtilsVars.final_wcdma_database = convert_dfs([wcdma_dfs], ["WCDMA"])
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
+
from utils.config_band import config_band
|
| 4 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
| 5 |
from utils.extract_code import extract_code_from_mrbts
|
| 6 |
from utils.utils_vars import UtilsVars
|
|
|
|
| 40 |
"Code_Sector",
|
| 41 |
"code_wcel",
|
| 42 |
"porteuse",
|
| 43 |
+
"band",
|
| 44 |
]
|
| 45 |
|
| 46 |
WBTS_COLUMNS = [
|
|
|
|
| 98 |
df_wcel["porteuse"] = (
|
| 99 |
df_wcel["UARFCN"].map(UtilsVars.porteuse_mapping).fillna("not found")
|
| 100 |
)
|
| 101 |
+
df_wcel["band"] = df_wcel["UARFCN"].map(UtilsVars.wcdma_band).fillna("not found")
|
| 102 |
+
|
| 103 |
+
# create config_band dataframe
|
| 104 |
+
df_band = config_band(df_wcel)
|
| 105 |
+
|
| 106 |
# Process WBTS data
|
| 107 |
df_wbts = dfs["WBTS"]
|
| 108 |
df_wbts.columns = df_wbts.columns.str.replace(r"[ ]", "", regex=True)
|
|
|
|
| 127 |
df_3g = df_3g[WCEL_COLUMNS]
|
| 128 |
|
| 129 |
df_physical_db = UtilsVars.physisal_db
|
| 130 |
+
df_3g = pd.merge(df_3g, df_band, on="code", how="left")
|
| 131 |
df_3g = pd.merge(df_3g, df_physical_db, on="Code_Sector", how="left")
|
| 132 |
# Save dataframes
|
| 133 |
# save_dataframe(df_wcel, "wcel")
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
def process_wcdma_data_to_excel(file_path: str):
|
| 147 |
+
"""
|
| 148 |
+
Process WCDMA data from the specified file path and convert it to Excel format
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
file_path (str): The path to the file.
|
| 152 |
+
"""
|
| 153 |
wcdma_dfs = process_wcdma_data(file_path)
|
| 154 |
UtilsVars.final_wcdma_database = convert_dfs([wcdma_dfs], ["WCDMA"])
|
utils/config_band.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def config_band(df: pd.DataFrame) -> pd.DataFrame:
|
| 5 |
+
"""
|
| 6 |
+
Create a dataframe that contains the site configuration band for each site code.
|
| 7 |
+
|
| 8 |
+
Parameters
|
| 9 |
+
----------
|
| 10 |
+
df : pd.DataFrame
|
| 11 |
+
The dataframe containing the site information, with columns "code" and "band"
|
| 12 |
+
|
| 13 |
+
Returns
|
| 14 |
+
-------
|
| 15 |
+
pd.DataFrame
|
| 16 |
+
The dataframe containing the site configuration band for each site code, with columns "code" and "site_config_band"
|
| 17 |
+
"""
|
| 18 |
+
df_band = df[["code", "band"]].copy()
|
| 19 |
+
df_band["ID"] = df_band[["code", "band"]].astype(str).apply("_".join, axis=1)
|
| 20 |
+
# remove duplicates ID
|
| 21 |
+
df_band = df_band.drop_duplicates(subset=["ID"])
|
| 22 |
+
df_band = df_band[["code", "band"]]
|
| 23 |
+
df_band = (
|
| 24 |
+
df_band.groupby("code")["band"]
|
| 25 |
+
.apply(lambda x: "/".join(sorted(x)))
|
| 26 |
+
.reset_index()
|
| 27 |
+
)
|
| 28 |
+
# rename band to config
|
| 29 |
+
df_band.rename(columns={"band": "site_config_band"}, inplace=True)
|
| 30 |
+
|
| 31 |
+
return df_band
|
utils/utils_vars.py
CHANGED
|
@@ -19,7 +19,8 @@ def get_physical_db():
|
|
| 19 |
class UtilsVars:
|
| 20 |
sector_mapping = {4: 1, 5: 2, 6: 3, 11: 1, 12: 2, 13: 3}
|
| 21 |
type_cellule = {1: "Macro Cell 1800", 0: "Macro Cell 900"}
|
| 22 |
-
|
|
|
|
| 23 |
configuration_schema = {1: "EGPRS 1800", 0: "EGPRS 900"}
|
| 24 |
channeltype_mapping = {4: "BCCH", 3: "TCH"}
|
| 25 |
porteuse_mapping = {
|
|
@@ -29,6 +30,13 @@ class UtilsVars:
|
|
| 29 |
10787: "OML UTRA Band I",
|
| 30 |
10837: "OML UTRA Band I",
|
| 31 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
final_lte_database = ""
|
| 33 |
final_gsm_database = ""
|
| 34 |
final_wcdma_database = ""
|
|
|
|
| 19 |
class UtilsVars:
|
| 20 |
sector_mapping = {4: 1, 5: 2, 6: 3, 11: 1, 12: 2, 13: 3}
|
| 21 |
type_cellule = {1: "Macro Cell 1800", 0: "Macro Cell 900"}
|
| 22 |
+
oml_band_frequence = {1: "OML BAND GSM 1800", 0: "OML BAND GSM 900"}
|
| 23 |
+
gsm_band = {1: "G1800", 0: "G900"}
|
| 24 |
configuration_schema = {1: "EGPRS 1800", 0: "EGPRS 900"}
|
| 25 |
channeltype_mapping = {4: "BCCH", 3: "TCH"}
|
| 26 |
porteuse_mapping = {
|
|
|
|
| 30 |
10787: "OML UTRA Band I",
|
| 31 |
10837: "OML UTRA Band I",
|
| 32 |
}
|
| 33 |
+
wcdma_band = {
|
| 34 |
+
3004: "U900",
|
| 35 |
+
3006: "U900",
|
| 36 |
+
10787: "U2100",
|
| 37 |
+
10837: "U2100",
|
| 38 |
+
10812: "U2100",
|
| 39 |
+
}
|
| 40 |
final_lte_database = ""
|
| 41 |
final_gsm_database = ""
|
| 42 |
final_wcdma_database = ""
|