LTE capacity 1st commit
Browse files- app.py +8 -0
- apps/kpi_analysis/gsm_capacity.py +25 -2
- apps/kpi_analysis/lte_capacity.py +207 -0
- assets/lte_capacity.png +0 -0
- documentations/lte_capacity_docs.py +221 -0
- process_kpi/lte_kpi_requirements.md +46 -0
- process_kpi/process_lte_capacity.py +420 -0
- utils/convert_to_excel.py +30 -8
- utils/kpi_analysis_utils.py +47 -0
app.py
CHANGED
|
@@ -142,6 +142,10 @@ if check_password():
|
|
| 142 |
"apps/kpi_analysis/gsm_capacity.py",
|
| 143 |
title=" ๐ GSM Capacity Analysis",
|
| 144 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
],
|
| 146 |
"Documentations": [
|
| 147 |
st.Page(
|
|
@@ -154,6 +158,10 @@ if check_password():
|
|
| 154 |
"documentations/gsm_capacity_docs.py",
|
| 155 |
title="๐GSM Capacity Documentation",
|
| 156 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
],
|
| 158 |
}
|
| 159 |
|
|
|
|
| 142 |
"apps/kpi_analysis/gsm_capacity.py",
|
| 143 |
title=" ๐ GSM Capacity Analysis",
|
| 144 |
),
|
| 145 |
+
st.Page(
|
| 146 |
+
"apps/kpi_analysis/lte_capacity.py",
|
| 147 |
+
title=" ๐ LTE Capacity Analysis",
|
| 148 |
+
),
|
| 149 |
],
|
| 150 |
"Documentations": [
|
| 151 |
st.Page(
|
|
|
|
| 158 |
"documentations/gsm_capacity_docs.py",
|
| 159 |
title="๐GSM Capacity Documentation",
|
| 160 |
),
|
| 161 |
+
st.Page(
|
| 162 |
+
"documentations/lte_capacity_docs.py",
|
| 163 |
+
title="๐LTE Capacity Documentation",
|
| 164 |
+
),
|
| 165 |
],
|
| 166 |
}
|
| 167 |
|
apps/kpi_analysis/gsm_capacity.py
CHANGED
|
@@ -2,11 +2,11 @@ import pandas as pd
|
|
| 2 |
import plotly.express as px
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
-
from process_kpi.process_gsm_capacity import
|
| 6 |
from utils.convert_to_excel import ( # Import convert_dfs from the appropriate module
|
| 7 |
-
convert_dfs,
|
| 8 |
convert_gsm_dfs,
|
| 9 |
)
|
|
|
|
| 10 |
|
| 11 |
st.title(" ๐ GSM Capacity Analysis")
|
| 12 |
doc_col, image_col = st.columns(2)
|
|
@@ -241,3 +241,26 @@ if (
|
|
| 241 |
textposition="outside",
|
| 242 |
)
|
| 243 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import plotly.express as px
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
+
from process_kpi.process_gsm_capacity import analyze_gsm_data
|
| 6 |
from utils.convert_to_excel import ( # Import convert_dfs from the appropriate module
|
|
|
|
| 7 |
convert_gsm_dfs,
|
| 8 |
)
|
| 9 |
+
from utils.kpi_analysis_utils import GsmCapacity
|
| 10 |
|
| 11 |
st.title(" ๐ GSM Capacity Analysis")
|
| 12 |
doc_col, image_col = st.columns(2)
|
|
|
|
| 241 |
textposition="outside",
|
| 242 |
)
|
| 243 |
st.plotly_chart(fig, use_container_width=True)
|
| 244 |
+
|
| 245 |
+
# create a map plotly with gsm_analysis_df and max_tch_call_blocking_bh
|
| 246 |
+
st.markdown("***")
|
| 247 |
+
st.markdown(":blue[**Max TCH Call Blocking BH distribution**]")
|
| 248 |
+
fig = px.scatter_mapbox(
|
| 249 |
+
gsm_analysis_df.dropna(
|
| 250 |
+
subset=["max_tch_call_blocking_bh", "Latitude", "Longitude"]
|
| 251 |
+
),
|
| 252 |
+
lat="Latitude",
|
| 253 |
+
lon="Longitude",
|
| 254 |
+
color=[
|
| 255 |
+
"red" if val > tch_blocking_threshold else "green"
|
| 256 |
+
for val in gsm_analysis_df[
|
| 257 |
+
"max_tch_call_blocking_bh"
|
| 258 |
+
].dropna() # .values
|
| 259 |
+
],
|
| 260 |
+
size="max_tch_call_blocking_bh",
|
| 261 |
+
zoom=10,
|
| 262 |
+
height=600,
|
| 263 |
+
title="Max TCH Call Blocking BH distribution",
|
| 264 |
+
)
|
| 265 |
+
fig.update_layout(mapbox_style="open-street-map")
|
| 266 |
+
st.plotly_chart(fig, use_container_width=True)
|
apps/kpi_analysis/lte_capacity.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
from process_kpi.process_lte_capacity import process_lte_bh_report
|
| 6 |
+
from utils.convert_to_excel import convert_lte_analysis_dfs
|
| 7 |
+
from utils.kpi_analysis_utils import LteCapacity
|
| 8 |
+
|
| 9 |
+
st.title("๐ LTE Capacity Analysis")
|
| 10 |
+
doc_col, image_col = st.columns(2)
|
| 11 |
+
|
| 12 |
+
with doc_col:
|
| 13 |
+
st.write(
|
| 14 |
+
"""
|
| 15 |
+
The report analyzes LTE capacity based on:
|
| 16 |
+
- Dump file required
|
| 17 |
+
- BH Cell level KPI report in CSV format
|
| 18 |
+
- Availability and PRB usage thresholds
|
| 19 |
+
"""
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
with image_col:
|
| 23 |
+
st.image("./assets/lte_capacity.png", width=250)
|
| 24 |
+
|
| 25 |
+
file1, file2 = st.columns(2)
|
| 26 |
+
|
| 27 |
+
with file1:
|
| 28 |
+
uploaded_dump = st.file_uploader("Upload Dump file in xlsb format", type="xlsb")
|
| 29 |
+
with file2:
|
| 30 |
+
uploaded_bh_report = st.file_uploader(
|
| 31 |
+
"Upload LTE Busy Hour Report in CSV format", type="csv"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Parameters
|
| 35 |
+
param_col1, param_col2 = st.columns(2)
|
| 36 |
+
param_col3, param_col4 = st.columns(2)
|
| 37 |
+
|
| 38 |
+
with param_col1:
|
| 39 |
+
num_last_days = st.number_input(
|
| 40 |
+
"Number of last days for analysis", value=7, min_value=1
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
with param_col2:
|
| 44 |
+
num_threshold_days = st.number_input(
|
| 45 |
+
"Number of days for threshold", value=3, min_value=1
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
with param_col3:
|
| 49 |
+
availability_threshold = st.number_input(
|
| 50 |
+
"Availability threshold (%)", value=95.0, min_value=0.0, max_value=100.0
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
with param_col4:
|
| 54 |
+
prb_usage_threshold = st.number_input(
|
| 55 |
+
"PRB usage threshold (%)", value=80.0, min_value=0.0, max_value=100.0
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
prb_diff_between_cells = st.number_input(
|
| 59 |
+
"Maximum PRB usage difference between cells (%)",
|
| 60 |
+
value=20.0,
|
| 61 |
+
min_value=0.0,
|
| 62 |
+
max_value=100.0,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
if uploaded_dump is not None and uploaded_bh_report is not None:
|
| 66 |
+
if st.button("Analyze Data", type="primary"):
|
| 67 |
+
with st.spinner("Processing data..."):
|
| 68 |
+
results = process_lte_bh_report(
|
| 69 |
+
dump_path=uploaded_dump,
|
| 70 |
+
bh_report_path=uploaded_bh_report,
|
| 71 |
+
num_last_days=num_last_days,
|
| 72 |
+
num_threshold_days=num_threshold_days,
|
| 73 |
+
availability_threshold=availability_threshold,
|
| 74 |
+
prb_usage_threshold=prb_usage_threshold,
|
| 75 |
+
prb_diff_between_cells_threshold=prb_diff_between_cells,
|
| 76 |
+
)
|
| 77 |
+
if results is not None:
|
| 78 |
+
bh_report: pd.DataFrame = results[0]
|
| 79 |
+
lte_analysis_df: pd.DataFrame = results[1]
|
| 80 |
+
LteCapacity.final_results = convert_lte_analysis_dfs(
|
| 81 |
+
[lte_analysis_df, bh_report], ["LTE_Analysis", "LTE_BH_Report"]
|
| 82 |
+
)
|
| 83 |
+
st.download_button(
|
| 84 |
+
on_click="ignore",
|
| 85 |
+
type="primary",
|
| 86 |
+
label="Download the Analysis Report",
|
| 87 |
+
data=LteCapacity.final_results,
|
| 88 |
+
file_name="LTE_Analysis_Report.xlsx",
|
| 89 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 90 |
+
)
|
| 91 |
+
st.write(lte_analysis_df)
|
| 92 |
+
# Add dataframe and Pie chart with "final_comments" distribution
|
| 93 |
+
st.markdown("***")
|
| 94 |
+
st.markdown(":blue[**Final comment distribution**]")
|
| 95 |
+
final_comments_df = (
|
| 96 |
+
lte_analysis_df.groupby("final_comments")
|
| 97 |
+
.size()
|
| 98 |
+
.reset_index(name="count")
|
| 99 |
+
.sort_values(by="count", ascending=False)
|
| 100 |
+
)
|
| 101 |
+
final_comments_col1, final_comments_col2 = st.columns((1, 3))
|
| 102 |
+
with final_comments_col1:
|
| 103 |
+
st.write(final_comments_df)
|
| 104 |
+
with final_comments_col2:
|
| 105 |
+
fig = px.pie(
|
| 106 |
+
final_comments_df,
|
| 107 |
+
names="final_comments",
|
| 108 |
+
values="count",
|
| 109 |
+
hover_name="final_comments",
|
| 110 |
+
hover_data=["count"],
|
| 111 |
+
title="Final comment distribution",
|
| 112 |
+
)
|
| 113 |
+
fig.update_layout(height=600)
|
| 114 |
+
fig.update_traces(
|
| 115 |
+
texttemplate="%{label}: %{value}",
|
| 116 |
+
textfont_size=15,
|
| 117 |
+
textposition="outside",
|
| 118 |
+
)
|
| 119 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 120 |
+
# Add dataframe and Pie chart with "final_comments" distribution where num_congested_cells > 0
|
| 121 |
+
st.markdown("***")
|
| 122 |
+
st.markdown(":blue[**Congested cells distribution**]")
|
| 123 |
+
congested_cells_df = (
|
| 124 |
+
lte_analysis_df[lte_analysis_df["num_congested_cells"] > 0]
|
| 125 |
+
.groupby("final_comments")
|
| 126 |
+
.size()
|
| 127 |
+
.reset_index(name="count")
|
| 128 |
+
.sort_values(by="count", ascending=False)
|
| 129 |
+
)
|
| 130 |
+
congested_cells_col1, congested_cells_col2 = st.columns((1, 3))
|
| 131 |
+
with congested_cells_col1:
|
| 132 |
+
st.write(congested_cells_df)
|
| 133 |
+
with congested_cells_col2:
|
| 134 |
+
fig = px.pie(
|
| 135 |
+
congested_cells_df,
|
| 136 |
+
names="final_comments",
|
| 137 |
+
values="count",
|
| 138 |
+
hover_name="final_comments",
|
| 139 |
+
hover_data=["count"],
|
| 140 |
+
title="Congested cells distribution",
|
| 141 |
+
)
|
| 142 |
+
fig.update_layout(height=600)
|
| 143 |
+
fig.update_traces(
|
| 144 |
+
texttemplate="%{label}: %{value}",
|
| 145 |
+
textfont_size=15,
|
| 146 |
+
textposition="outside",
|
| 147 |
+
)
|
| 148 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 149 |
+
|
| 150 |
+
# Add dataframe and Bar chart with "final_comments" distribution where num_congested_cells > 0 per Region
|
| 151 |
+
st.markdown("***")
|
| 152 |
+
st.markdown(":blue[**Congested cells distribution per Region**]")
|
| 153 |
+
congested_cells_region_df = (
|
| 154 |
+
lte_analysis_df[lte_analysis_df["num_congested_cells"] > 0]
|
| 155 |
+
.groupby(["Region", "final_comments"])
|
| 156 |
+
.size()
|
| 157 |
+
.reset_index(name="count")
|
| 158 |
+
.sort_values(by="count", ascending=False)
|
| 159 |
+
)
|
| 160 |
+
congested_cells_region_col1, congested_cells_region_col2 = st.columns(
|
| 161 |
+
(1, 3)
|
| 162 |
+
)
|
| 163 |
+
with congested_cells_region_col1:
|
| 164 |
+
st.write(congested_cells_region_df)
|
| 165 |
+
with congested_cells_region_col2:
|
| 166 |
+
fig = px.bar(
|
| 167 |
+
congested_cells_region_df,
|
| 168 |
+
x="Region",
|
| 169 |
+
y="count",
|
| 170 |
+
color="final_comments",
|
| 171 |
+
title="Congested cells distribution per Region",
|
| 172 |
+
)
|
| 173 |
+
fig.update_layout(height=600)
|
| 174 |
+
fig.update_traces(
|
| 175 |
+
texttemplate="%{value}", textfont_size=15, textposition="outside"
|
| 176 |
+
)
|
| 177 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 178 |
+
# Add dataframe and Bar chart with "final_comments" distribution where num_congested_cells > 0 per Region groupby region
|
| 179 |
+
st.markdown("***")
|
| 180 |
+
st.markdown(
|
| 181 |
+
":blue[**Congested cells distribution per Region groupby Region**]"
|
| 182 |
+
)
|
| 183 |
+
congested_cells_region_groupby_region_df = (
|
| 184 |
+
lte_analysis_df[lte_analysis_df["num_congested_cells"] > 0]
|
| 185 |
+
.groupby(["Region"])
|
| 186 |
+
.size()
|
| 187 |
+
.reset_index(name="count")
|
| 188 |
+
.sort_values(by="count", ascending=False)
|
| 189 |
+
)
|
| 190 |
+
(
|
| 191 |
+
congested_cells_region_groupby_region_col1,
|
| 192 |
+
congested_cells_region_groupby_region_col2,
|
| 193 |
+
) = st.columns((1, 3))
|
| 194 |
+
with congested_cells_region_groupby_region_col1:
|
| 195 |
+
st.write(congested_cells_region_groupby_region_df)
|
| 196 |
+
with congested_cells_region_groupby_region_col2:
|
| 197 |
+
fig = px.bar(
|
| 198 |
+
congested_cells_region_groupby_region_df,
|
| 199 |
+
x="Region",
|
| 200 |
+
y="count",
|
| 201 |
+
title="Congested cells distribution per Region groupby Region",
|
| 202 |
+
)
|
| 203 |
+
fig.update_layout(height=600)
|
| 204 |
+
fig.update_traces(
|
| 205 |
+
texttemplate="%{value}", textfont_size=15, textposition="outside"
|
| 206 |
+
)
|
| 207 |
+
st.plotly_chart(fig, use_container_width=True)
|
assets/lte_capacity.png
ADDED
|
documentations/lte_capacity_docs.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
st.markdown(
|
| 4 |
+
"""
|
| 5 |
+
# LTE Capacity Analysis Documentation
|
| 6 |
+
|
| 7 |
+
This documentation provides a technical and practical reference for the LTE Capacity Analysis application, detailing input/output columns, processing workflow, and key metrics as implemented in:
|
| 8 |
+
- apps/kpi_analysis/lte_capacity.py
|
| 9 |
+
- process_kpi/process_lte_capacity.py
|
| 10 |
+
- utils/kpi_analysis_utils.py
|
| 11 |
+
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
## 1. Input Files and Expected Columns
|
| 15 |
+
|
| 16 |
+
### a. Dump File (XLSB)
|
| 17 |
+
- Contains network configuration and site data.
|
| 18 |
+
- Expected columns (see `LTE_DATABASE_COLUMNS` in `process_lte_capacity.py`):
|
| 19 |
+
- code: Unique site identifier
|
| 20 |
+
- Region: Geographical region of the site
|
| 21 |
+
- site_config_band: Configured frequency bands at the site
|
| 22 |
+
- final_name: Formatted site name
|
| 23 |
+
|
| 24 |
+
### b. Busy Hour (BH) KPI Report (CSV)
|
| 25 |
+
- Contains performance metrics for LTE cells during busy hours.
|
| 26 |
+
- Key columns (see `KPI_COLUMNS` in `process_lte_capacity.py`):
|
| 27 |
+
- date: Timestamp of the measurement
|
| 28 |
+
- LNCEL_name: Cell identifier (format: SiteName_LBand_CellID)
|
| 29 |
+
- Cell_Avail_excl_BLU: Cell availability percentage excluding BLU
|
| 30 |
+
- E_UTRAN_Avg_PRB_usage_per_TTI_DL: Average Physical Resource Block usage in downlink
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## 2. Output Columns and Their Meaning
|
| 35 |
+
|
| 36 |
+
### a. LTE Analysis Output (`LTE_ANALYSIS_COLUMNS`):
|
| 37 |
+
- **Site Information**:
|
| 38 |
+
- code: Site identifier
|
| 39 |
+
- Region: Geographical region
|
| 40 |
+
- site_config_band: Configured frequency bands
|
| 41 |
+
|
| 42 |
+
- **Cell Configuration**:
|
| 43 |
+
- LNCEL_name_l800: Cell name for 800MHz band
|
| 44 |
+
- LNCEL_name_l1800: Cell name for 1800MHz band
|
| 45 |
+
- LNCEL_name_l2300: Cell name for 2300MHz band
|
| 46 |
+
- LNCEL_name_l2600: Cell name for 2600MHz band
|
| 47 |
+
- LNCEL_name_l1800s: Cell name for 1800MHz supplementary band
|
| 48 |
+
|
| 49 |
+
- **PRB Usage Metrics**:
|
| 50 |
+
- avg_prb_usage_bh_l800: Average PRB usage for 800MHz band
|
| 51 |
+
- avg_prb_usage_bh_l1800: Average PRB usage for 1800MHz band
|
| 52 |
+
- avg_prb_usage_bh_l2300: Average PRB usage for 2300MHz band
|
| 53 |
+
- avg_prb_usage_bh_l2600: Average PRB usage for 2600MHz band
|
| 54 |
+
- avg_prb_usage_bh_l1800s: Average PRB usage for 1800s band
|
| 55 |
+
|
| 56 |
+
- **Cell Status**:
|
| 57 |
+
- num_congested_cells: Number of cells exceeding PRB usage threshold
|
| 58 |
+
- num_cells: Total number of cells at the site
|
| 59 |
+
- num_cell_with_kpi: Number of cells with valid KPI data
|
| 60 |
+
- num_down_or_no_kpi_cells: Number of down or non-reporting cells
|
| 61 |
+
- prb_diff_between_cells: Maximum PRB usage difference between cells at the site
|
| 62 |
+
- load_balance_required: Flag indicating if load balancing is needed
|
| 63 |
+
|
| 64 |
+
- **Analysis Results**:
|
| 65 |
+
- congestion_comment: Comments on cell congestion status
|
| 66 |
+
- final_comments: Summary of site status and recommendations
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
## 3. Processing Workflow
|
| 71 |
+
|
| 72 |
+
1. **Data Loading and Validation**:
|
| 73 |
+
- Load and validate the dump file and BH report
|
| 74 |
+
- Check for required columns and data integrity
|
| 75 |
+
|
| 76 |
+
2. **Data Processing**:
|
| 77 |
+
- Parse site and cell information from the dump file
|
| 78 |
+
- Process KPI data from the BH report
|
| 79 |
+
- Calculate average PRB usage per cell and band
|
| 80 |
+
|
| 81 |
+
3. **Analysis**:
|
| 82 |
+
- Identify congested cells based on PRB usage threshold
|
| 83 |
+
- Calculate load balancing requirements
|
| 84 |
+
- Determine site-level congestion status
|
| 85 |
+
- Generate recommendations for capacity expansion
|
| 86 |
+
|
| 87 |
+
4. **Reporting**:
|
| 88 |
+
- Combine all analysis results into a comprehensive DataFrame
|
| 89 |
+
- Generate final comments and recommendations
|
| 90 |
+
- Prepare data for visualization and export
|
| 91 |
+
|
| 92 |
+
---
|
| 93 |
+
|
| 94 |
+
## 4. Key Functions
|
| 95 |
+
|
| 96 |
+
### a. `process_lte_bh_report` (in `process_lte_capacity.py`)
|
| 97 |
+
- Main function that orchestrates the LTE capacity analysis
|
| 98 |
+
- Parameters:
|
| 99 |
+
- dump_path: Path to the site dump file
|
| 100 |
+
- bh_report_path: Path to the Busy Hour KPI report
|
| 101 |
+
- num_last_days: Number of days to analyze
|
| 102 |
+
- num_threshold_days: Number of days for threshold calculations
|
| 103 |
+
- availability_threshold: Minimum required cell availability (%)
|
| 104 |
+
- prb_usage_threshold: Threshold for PRB usage (%)
|
| 105 |
+
- prb_diff_between_cells_threshold: Maximum allowed PRB difference between cells (%)
|
| 106 |
+
|
| 107 |
+
### b. `lte_analysis_logic` (in `process_lte_capacity.py`)
|
| 108 |
+
- Core logic for analyzing LTE capacity
|
| 109 |
+
- Identifies congested cells and calculates load balancing requirements
|
| 110 |
+
- Generates comments and recommendations
|
| 111 |
+
### c. analyze_prb_usage (in kpi_analysis_utils.py)
|
| 112 |
+
- Analyzes PRB usage patterns
|
| 113 |
+
- Identifies cells with high PRB utilization
|
| 114 |
+
- Generates comments on congestion status
|
| 115 |
+
|
| 116 |
+
### d. cell_availability_analysis (in kpi_analysis_utils.py)
|
| 117 |
+
- Analyzes cell availability metrics
|
| 118 |
+
- Identifies cells with availability issues
|
| 119 |
+
- Generates availability-related comments
|
| 120 |
+
|
| 121 |
+
---
|
| 122 |
+
|
| 123 |
+
## 5. Configuration Parameters
|
| 124 |
+
|
| 125 |
+
### a. Band Mapping (from LteCapacity class):
|
| 126 |
+
- Defines the recommended next band for capacity expansion
|
| 127 |
+
- Example: L1800 โ L800, L800 โ L1800, etc.
|
| 128 |
+
|
| 129 |
+
### b. Thresholds (configurable via UI/parameters):
|
| 130 |
+
- Availability Threshold: Default 95%
|
| 131 |
+
- PRB Usage Threshold: Default 80%
|
| 132 |
+
- PRB Difference Threshold: Default 20%
|
| 133 |
+
- Analysis Period: Default 7 days
|
| 134 |
+
- Threshold Days: Default 3 days
|
| 135 |
+
|
| 136 |
+
---
|
| 137 |
+
|
| 138 |
+
## 6. Example Usage and Output Analysis
|
| 139 |
+
|
| 140 |
+
### Basic Usage
|
| 141 |
+
```python
|
| 142 |
+
from process_kpi.process_lte_capacity import process_lte_bh_report
|
| 143 |
+
import pandas as pd
|
| 144 |
+
|
| 145 |
+
# Process LTE capacity analysis
|
| 146 |
+
results = process_lte_bh_report(
|
| 147 |
+
dump_path="network_dump_202305.xlsb",
|
| 148 |
+
bh_report_path="lte_bh_report_20230501_20230507.csv",
|
| 149 |
+
num_last_days=7, # Analyze last 7 days
|
| 150 |
+
num_threshold_days=3, # Consider threshold violations if seen on โฅ3 days
|
| 151 |
+
availability_threshold=95.0, # Minimum acceptable cell availability (%)
|
| 152 |
+
prb_usage_threshold=80.0, # PRB usage threshold for congestion (%)
|
| 153 |
+
prb_diff_between_cells_threshold=20.0 # Max allowed PRB difference between cells (%)
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Unpack results
|
| 157 |
+
bh_report_df, lte_analysis_df = results
|
| 158 |
+
|
| 159 |
+
# Example: Display sites with congestion
|
| 160 |
+
congested_sites = lte_analysis_df[lte_analysis_df['num_congested_cells'] > 0]
|
| 161 |
+
print(f"Found {len(congested_sites)} sites with congestion")
|
| 162 |
+
|
| 163 |
+
# Example: Export results to Excel
|
| 164 |
+
with pd.ExcelWriter('lte_capacity_analysis.xlsx') as writer:
|
| 165 |
+
lte_analysis_df.to_excel(writer, sheet_name='LTE_Analysis', index=False)
|
| 166 |
+
bh_report_df.to_excel(writer, sheet_name='BH_Report', index=False)
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
### Understanding the Output
|
| 170 |
+
- `lte_analysis_df`: Contains per-site analysis with capacity recommendations
|
| 171 |
+
- `bh_report_df`: Raw busy hour metrics for detailed investigation
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
## 7. Column Reference Table
|
| 175 |
+
|
| 176 |
+
### Site Information
|
| 177 |
+
| Column | Type | Description | Example |
|
| 178 |
+
|--------|------|-------------|---------|
|
| 179 |
+
| code | str | Unique site identifier | SITE123 |
|
| 180 |
+
| Region | str | Mali Geographical region | CENTRAL |
|
| 181 |
+
| site_config_band | str | Configured frequency bands | L1800/L800 |
|
| 182 |
+
|
| 183 |
+
### Cell Configuration
|
| 184 |
+
| Column | Type | Description | Example |
|
| 185 |
+
|--------|------|-------------|---------|
|
| 186 |
+
| LNCEL_name_l800 | str | 800MHz cell name | SITE123_L800_1 |
|
| 187 |
+
| LNCEL_name_l1800 | str | 1800MHz cell name | SITE123_L1800_1 |
|
| 188 |
+
| LNCEL_name_l2300 | str | 2300MHz cell name | SITE123_L2300_1 |
|
| 189 |
+
| LNCEL_name_l2600 | str | 2600MHz cell name | SITE123_L2600_1 |
|
| 190 |
+
| LNCEL_name_l1800s | str | 1800s cell name | SITE123_L1800S_1 |
|
| 191 |
+
|
| 192 |
+
### PRB Usage Metrics
|
| 193 |
+
| Column | Type | Description | Range |
|
| 194 |
+
|--------|------|-------------|-------|
|
| 195 |
+
| avg_prb_usage_bh_l800 | float | Avg PRB usage 800MHz | 0-100% |
|
| 196 |
+
| avg_prb_usage_bh_l1800 | float | Avg PRB usage 1800MHz | 0-100% |
|
| 197 |
+
| avg_prb_usage_bh_l2300 | float | Avg PRB usage 2300MHz | 0-100% |
|
| 198 |
+
| avg_prb_usage_bh_l2600 | float | Avg PRB usage 2600MHz | 0-100% |
|
| 199 |
+
| avg_prb_usage_bh_l1800s | float | Avg PRB usage 1800s | 0-100% |
|
| 200 |
+
|
| 201 |
+
### Cell Status
|
| 202 |
+
| Column | Type | Description |
|
| 203 |
+
|--------|------|-------------|
|
| 204 |
+
| num_cells | int | Total cells at site |
|
| 205 |
+
| num_cell_with_kpi | int | Cells with valid KPI data |
|
| 206 |
+
| num_down_or_no_kpi_cells | int | Non-reporting cells |
|
| 207 |
+
| num_congested_cells | int | Cells exceeding PRB threshold |
|
| 208 |
+
| prb_diff_between_cells | float | Max PRB difference between cells |
|
| 209 |
+
| load_balance_required | bool | If load balancing is needed |
|
| 210 |
+
|
| 211 |
+
### Analysis Results
|
| 212 |
+
| Column | Type | Description |
|
| 213 |
+
|--------|------|-------------|
|
| 214 |
+
| congestion_comment | str | Analysis of congestion status |
|
| 215 |
+
| final_comments | str | Summary and recommendations |
|
| 216 |
+
| recommended_action | str | Suggested capacity actions |
|
| 217 |
+
| next_band | str | Recommended band for expansion |
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
"""
|
| 221 |
+
)
|
process_kpi/lte_kpi_requirements.md
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# LTE CAPACITY REPORT
|
| 2 |
+
|
| 3 |
+
Based on gsm and wcdma exemple let's build LTE capacity report
|
| 4 |
+
|
| 5 |
+
## Required Input
|
| 6 |
+
|
| 7 |
+
- File : LTE BH report with columns :
|
| 8 |
+
- PERIOD_START_TIME
|
| 9 |
+
- MRBTS/SBTS name
|
| 10 |
+
- LNBTS name
|
| 11 |
+
- LNCEL name
|
| 12 |
+
- DN
|
| 13 |
+
- Cell Avail excl BLU
|
| 14 |
+
- E-UTRAN Avg PRB usage per TTI DL
|
| 15 |
+
- Number of last day for the analysis
|
| 16 |
+
- Number of days for threshold
|
| 17 |
+
- Availability threshold
|
| 18 |
+
- PRB usage per TTI DL threshold
|
| 19 |
+
- Max difference between PRB usage over cells of the same BTS
|
| 20 |
+
|
| 21 |
+
### TASK
|
| 22 |
+
|
| 23 |
+
- Pivot KPI in BH report per KPI (Cell Avail excl BLU, E-UTRAN Avg PRB usage per TTI DL)
|
| 24 |
+
- Calculate Average and Max of PRB usage per TTI DL
|
| 25 |
+
- Calculate Average and Max of Cell Avail excl BLU
|
| 26 |
+
- Count number of Days with Cell Avail excl BLU below Availability threshold
|
| 27 |
+
- Count number of Days with PRB usage per TTI DL exceeded PRB usage per TTI DL threshold
|
| 28 |
+
- Create separate DF per sector and band based on LNCEL name
|
| 29 |
+
- _1_L800: column_name = Sector_1_L800
|
| 30 |
+
- _2_L800: column_name = Sector_2_L800
|
| 31 |
+
- _3_L800: column_name = Sector_3_L800
|
| 32 |
+
- _1_L1800: column_name = Sector_1_L1800
|
| 33 |
+
- _2_L1800: column_name = Sector_2_L1800
|
| 34 |
+
- _3_L1800: column_name = Sector_3_L1800
|
| 35 |
+
- _1_L2300: column_name = Sector_1_L2300
|
| 36 |
+
- _2_L2300: column_name = Sector_2_L2300
|
| 37 |
+
- _3_L2300: column_name = Sector_3_L2300
|
| 38 |
+
- _1_L2600: column_name = Sector_1_L2600
|
| 39 |
+
- _2_L2600: column_name = Sector_2_L2600
|
| 40 |
+
- _3_L2600: column_name = Sector_3_L2600
|
| 41 |
+
- _1S_L1800: column_name = Sector_1S_L1800
|
| 42 |
+
- _2S_L1800: column_name = Sector_2S_L1800
|
| 43 |
+
- _3S_L1800: column_name = Sector_3S_L1800
|
| 44 |
+
- Merge DFs per sector LNBTS name
|
| 45 |
+
- Concat dfs per Bands
|
| 46 |
+
|
process_kpi/process_lte_capacity.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
from queries.process_lte import process_lte_data
|
| 5 |
+
from utils.convert_to_excel import save_dataframe
|
| 6 |
+
from utils.kpi_analysis_utils import (
|
| 7 |
+
LteCapacity,
|
| 8 |
+
analyze_prb_usage,
|
| 9 |
+
cell_availability_analysis,
|
| 10 |
+
create_dfs_per_kpi,
|
| 11 |
+
create_hourly_date,
|
| 12 |
+
kpi_naming_cleaning,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
LTE_ANALYSIS_COLUMNS = [
|
| 16 |
+
"code",
|
| 17 |
+
"code_sector",
|
| 18 |
+
"Region",
|
| 19 |
+
"site_config_band",
|
| 20 |
+
"LNCEL_name_l800",
|
| 21 |
+
"LNCEL_name_l1800",
|
| 22 |
+
"LNCEL_name_l2300",
|
| 23 |
+
"LNCEL_name_l2600",
|
| 24 |
+
"LNCEL_name_l1800s",
|
| 25 |
+
"avg_prb_usage_bh_l800",
|
| 26 |
+
"avg_prb_usage_bh_l1800",
|
| 27 |
+
"avg_prb_usage_bh_l2300",
|
| 28 |
+
"avg_prb_usage_bh_l2600",
|
| 29 |
+
"avg_prb_usage_bh_l1800s",
|
| 30 |
+
"num_congested_cells",
|
| 31 |
+
"num_cells",
|
| 32 |
+
"num_cell_with_kpi",
|
| 33 |
+
"num_down_or_no_kpi_cells",
|
| 34 |
+
"prb_diff_between_cells",
|
| 35 |
+
"load_balance_required",
|
| 36 |
+
"congestion_comment",
|
| 37 |
+
"final_comments",
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
LTE_DATABASE_COLUMNS = [
|
| 41 |
+
"code",
|
| 42 |
+
"Region",
|
| 43 |
+
"site_config_band",
|
| 44 |
+
"final_name",
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
KPI_COLUMNS = [
|
| 48 |
+
"date",
|
| 49 |
+
"LNCEL_name",
|
| 50 |
+
"Cell_Avail_excl_BLU",
|
| 51 |
+
"E_UTRAN_Avg_PRB_usage_per_TTI_DL",
|
| 52 |
+
"DL_PRB_Util_p_TTI_Lev_10",
|
| 53 |
+
]
|
| 54 |
+
PRB_COLUMNS = [
|
| 55 |
+
"LNCEL_name",
|
| 56 |
+
"avg_prb_usage_bh",
|
| 57 |
+
# "avg_prb_usage_bh_lev_10",
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def lte_analysis_logic(
|
| 62 |
+
df: pd.DataFrame,
|
| 63 |
+
prb_usage_threshold: int,
|
| 64 |
+
prb_diff_between_cells_threshold: int,
|
| 65 |
+
) -> pd.DataFrame:
|
| 66 |
+
lte_analysis_logic_df = df.copy()
|
| 67 |
+
lte_analysis_logic_df["num_congested_cells"] = (
|
| 68 |
+
lte_analysis_logic_df[
|
| 69 |
+
[
|
| 70 |
+
"avg_prb_usage_bh_l800",
|
| 71 |
+
"avg_prb_usage_bh_l1800",
|
| 72 |
+
"avg_prb_usage_bh_l2300",
|
| 73 |
+
"avg_prb_usage_bh_l2600",
|
| 74 |
+
"avg_prb_usage_bh_l1800s",
|
| 75 |
+
]
|
| 76 |
+
]
|
| 77 |
+
>= prb_usage_threshold
|
| 78 |
+
).sum(axis=1)
|
| 79 |
+
|
| 80 |
+
# Add Number of cells LNCEL_name_l800 LNCEL_name_l1800 LNCEL_name_l2300 LNCEL_name_l2600 LNCEL_name_l1800s
|
| 81 |
+
lte_analysis_logic_df["num_cells"] = lte_analysis_logic_df[
|
| 82 |
+
[
|
| 83 |
+
"LNCEL_name_l800",
|
| 84 |
+
"LNCEL_name_l1800",
|
| 85 |
+
"LNCEL_name_l2300",
|
| 86 |
+
"LNCEL_name_l2600",
|
| 87 |
+
"LNCEL_name_l1800s",
|
| 88 |
+
]
|
| 89 |
+
].count(axis=1)
|
| 90 |
+
|
| 91 |
+
# Add Number of cell with KPI
|
| 92 |
+
lte_analysis_logic_df["num_cell_with_kpi"] = lte_analysis_logic_df[
|
| 93 |
+
[
|
| 94 |
+
"avg_prb_usage_bh_l800",
|
| 95 |
+
"avg_prb_usage_bh_l1800",
|
| 96 |
+
"avg_prb_usage_bh_l2300",
|
| 97 |
+
"avg_prb_usage_bh_l2600",
|
| 98 |
+
"avg_prb_usage_bh_l1800s",
|
| 99 |
+
]
|
| 100 |
+
].count(axis=1)
|
| 101 |
+
|
| 102 |
+
# Number of Down or No KPI cells = num_cells -num_cell_with_kpi
|
| 103 |
+
lte_analysis_logic_df["num_down_or_no_kpi_cells"] = (
|
| 104 |
+
lte_analysis_logic_df["num_cells"] - lte_analysis_logic_df["num_cell_with_kpi"]
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Check Max difference between avg_prb_usage_bh_l800 avg_prb_usage_bh_l1800 avg_prb_usage_bh_l2300 avg_prb_usage_bh_l2600 avg_prb_usage_bh_l1800s
|
| 108 |
+
lte_analysis_logic_df["prb_diff_between_cells"] = lte_analysis_logic_df[
|
| 109 |
+
[
|
| 110 |
+
"avg_prb_usage_bh_l800",
|
| 111 |
+
"avg_prb_usage_bh_l1800",
|
| 112 |
+
"avg_prb_usage_bh_l2300",
|
| 113 |
+
"avg_prb_usage_bh_l2600",
|
| 114 |
+
"avg_prb_usage_bh_l1800s",
|
| 115 |
+
]
|
| 116 |
+
].apply(lambda row: max(row) - min(row), axis=1)
|
| 117 |
+
|
| 118 |
+
# Add Load balance required column = Yes if prb_diff_between_cells > prb_diff_between_cells_threshold else No
|
| 119 |
+
lte_analysis_logic_df["load_balance_required"] = lte_analysis_logic_df[
|
| 120 |
+
"prb_diff_between_cells"
|
| 121 |
+
].apply(lambda x: "Yes" if x > prb_diff_between_cells_threshold else "No")
|
| 122 |
+
|
| 123 |
+
# Add Next band column
|
| 124 |
+
lte_analysis_logic_df["next_band"] = lte_analysis_logic_df["site_config_band"].map(
|
| 125 |
+
LteCapacity.next_band_mapping
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Add congestion comments
|
| 129 |
+
# if num_congested_cells == 0 and num_down_or_no_kpi_cells == 0 = " No Congestion"
|
| 130 |
+
# if num_congested_cells == 0 and num_down_or_no_kpi_cells > 0 = "No congestion but Down cell"
|
| 131 |
+
# if num_congested_cells > 0 and num_down_or_no_kpi_cells > 0 = "Congestion but Colocated Down Cell"
|
| 132 |
+
# Else Need Action
|
| 133 |
+
conditions = [
|
| 134 |
+
(lte_analysis_logic_df["num_congested_cells"] == 0)
|
| 135 |
+
& (lte_analysis_logic_df["num_down_or_no_kpi_cells"] == 0),
|
| 136 |
+
(lte_analysis_logic_df["num_congested_cells"] == 0)
|
| 137 |
+
& (lte_analysis_logic_df["num_down_or_no_kpi_cells"] > 0),
|
| 138 |
+
(lte_analysis_logic_df["num_congested_cells"] > 0)
|
| 139 |
+
& (lte_analysis_logic_df["num_down_or_no_kpi_cells"] > 0),
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
choices = [
|
| 143 |
+
"No Congestion",
|
| 144 |
+
"No congestion but Down cell",
|
| 145 |
+
"Congestion but Colocated Down Cell",
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
lte_analysis_logic_df["congestion_comment"] = np.select(
|
| 149 |
+
conditions, choices, default="Need Action"
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Add "Actions" column
|
| 153 |
+
# if load_balance_required = "Yes" and congestion_comment = "Need Action" then "Load Balancing parameter tuning required"
|
| 154 |
+
# if load_balance_required = "Yes" and congestion_comment = "Need Action" then "Add Layer"
|
| 155 |
+
# Else keep congestion_comment
|
| 156 |
+
conditions = [
|
| 157 |
+
(lte_analysis_logic_df["load_balance_required"] == "Yes")
|
| 158 |
+
& (lte_analysis_logic_df["congestion_comment"] == "Need Action"),
|
| 159 |
+
(lte_analysis_logic_df["load_balance_required"] == "No")
|
| 160 |
+
& (lte_analysis_logic_df["congestion_comment"] == "Need Action"),
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
choices = [
|
| 164 |
+
"Load Balancing parameter tuning required",
|
| 165 |
+
"Add Layer",
|
| 166 |
+
]
|
| 167 |
+
|
| 168 |
+
lte_analysis_logic_df["actions"] = np.select(
|
| 169 |
+
conditions, choices, default=lte_analysis_logic_df["congestion_comment"]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Add Final Comments
|
| 173 |
+
# if "actions" = "Add Layer" then "'Add' + 'next_band''
|
| 174 |
+
# Else keep "actions" as it is
|
| 175 |
+
lte_analysis_logic_df["final_comments"] = lte_analysis_logic_df.apply(
|
| 176 |
+
lambda row: (
|
| 177 |
+
f"Add {row['next_band']}"
|
| 178 |
+
if row["actions"] == "Add Layer"
|
| 179 |
+
else row["actions"]
|
| 180 |
+
),
|
| 181 |
+
axis=1,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# create column "sector" equal to conteent of "LNCEL_name_l800" if not empty else "LNCEL_name_l1800" if not empty else "LNCEL_name_l2300"
|
| 185 |
+
lte_analysis_logic_df["sector"] = (
|
| 186 |
+
lte_analysis_logic_df["LNCEL_name_l800"]
|
| 187 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l1800"])
|
| 188 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l2300"])
|
| 189 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l2600"])
|
| 190 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l1800s"])
|
| 191 |
+
)
|
| 192 |
+
# remove rows where sector is empty
|
| 193 |
+
lte_analysis_logic_df = lte_analysis_logic_df[
|
| 194 |
+
lte_analysis_logic_df["sector"].notna()
|
| 195 |
+
]
|
| 196 |
+
# Add sector_id column if sector contains : '_1_" then 1 elif sector contains : '_2_" then 2 elif sector contains : '_3_" then 3
|
| 197 |
+
lte_analysis_logic_df["sector_id"] = np.where(
|
| 198 |
+
lte_analysis_logic_df["sector"].str.contains("_1_"),
|
| 199 |
+
1,
|
| 200 |
+
np.where(
|
| 201 |
+
lte_analysis_logic_df["sector"].str.contains("_2_"),
|
| 202 |
+
2,
|
| 203 |
+
np.where(lte_analysis_logic_df["sector"].str.contains("_3_"), 3, np.nan),
|
| 204 |
+
),
|
| 205 |
+
)
|
| 206 |
+
# add code_sector column by combine code and sector_id
|
| 207 |
+
lte_analysis_logic_df["code_sector"] = (
|
| 208 |
+
lte_analysis_logic_df["code"].astype(str)
|
| 209 |
+
+ "_"
|
| 210 |
+
+ lte_analysis_logic_df["sector_id"].astype(str)
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
# remove '.0' from code_sector
|
| 214 |
+
lte_analysis_logic_df["code_sector"] = lte_analysis_logic_df[
|
| 215 |
+
"code_sector"
|
| 216 |
+
].str.replace(".0", "")
|
| 217 |
+
|
| 218 |
+
# lte_analysis_logic_df = lte_analysis_logic_df[LTE_ANALYSIS_COLUMNS]
|
| 219 |
+
return lte_analysis_logic_df
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def dfs_per_band_cell(df: pd.DataFrame) -> pd.DataFrame:
|
| 223 |
+
# Base DataFrame with unique codes, Region, and site_config_band
|
| 224 |
+
all_codes_df = df[["code", "Region", "site_config_band"]].drop_duplicates()
|
| 225 |
+
|
| 226 |
+
# Configuration for sector groups and their respective LNCEL patterns and column suffixes
|
| 227 |
+
# Format: { "group_key": [(lncel_name_pattern_part, column_suffix), ...] }
|
| 228 |
+
# lncel_name_pattern_part will be combined with "_<group_key>" or similar
|
| 229 |
+
# Example: for group "1", pattern "_1_L800" gives suffix "l800"
|
| 230 |
+
sector_groups_config = {
|
| 231 |
+
"1": [
|
| 232 |
+
("_1_L800", "l800"),
|
| 233 |
+
("_1_L1800", "l1800"),
|
| 234 |
+
("_1_L2300", "l2300"),
|
| 235 |
+
("_1_L2600", "l2600"),
|
| 236 |
+
("_1S_L1800", "l1800s"),
|
| 237 |
+
],
|
| 238 |
+
"2": [
|
| 239 |
+
("_2_L800", "l800"),
|
| 240 |
+
("_2_L1800", "l1800"),
|
| 241 |
+
("_2_L2300", "l2300"),
|
| 242 |
+
("_2_L2600", "l2600"),
|
| 243 |
+
("_2S_L1800", "l1800s"),
|
| 244 |
+
],
|
| 245 |
+
"3": [
|
| 246 |
+
("_3_L800", "l800"),
|
| 247 |
+
("_3_L1800", "l1800"),
|
| 248 |
+
("_3_L2300", "l2300"),
|
| 249 |
+
("_3_L2600", "l2600"),
|
| 250 |
+
("_3S_L1800", "l1800s"),
|
| 251 |
+
],
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
all_processed_sectors_dfs = []
|
| 255 |
+
|
| 256 |
+
for sector_group_key, band_configurations in sector_groups_config.items():
|
| 257 |
+
# Start with the base DataFrame for the current sector group
|
| 258 |
+
current_sector_group_df = all_codes_df.copy()
|
| 259 |
+
|
| 260 |
+
for lncel_name_pattern, column_suffix in band_configurations:
|
| 261 |
+
# Filter the original DataFrame for the current LNCEL pattern
|
| 262 |
+
# The pattern assumes LNCEL_name contains something like "SITENAME<lncel_name_pattern>"
|
| 263 |
+
filtered_band_df = df[df["LNCEL_name"].str.contains(lncel_name_pattern)]
|
| 264 |
+
|
| 265 |
+
# Select relevant columns and rename them for the merge
|
| 266 |
+
# This avoids pandas automatically adding _x, _y suffixes and then needing to rename them
|
| 267 |
+
df_to_merge = filtered_band_df[
|
| 268 |
+
["code", "LNCEL_name", "avg_prb_usage_bh"]
|
| 269 |
+
].rename(
|
| 270 |
+
columns={
|
| 271 |
+
"LNCEL_name": f"LNCEL_name_{column_suffix}",
|
| 272 |
+
"avg_prb_usage_bh": f"avg_prb_usage_bh_{column_suffix}",
|
| 273 |
+
}
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# Perform a left merge
|
| 277 |
+
current_sector_group_df = pd.merge(
|
| 278 |
+
current_sector_group_df, df_to_merge, on="code", how="left"
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
all_processed_sectors_dfs.append(current_sector_group_df)
|
| 282 |
+
|
| 283 |
+
# Concatenate all the processed sector DataFrames
|
| 284 |
+
all_sectors_dfs = pd.concat(all_processed_sectors_dfs, axis=0, ignore_index=True)
|
| 285 |
+
|
| 286 |
+
return all_sectors_dfs
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def lte_database_for_capacity(dump_path: str):
|
| 290 |
+
dfs = process_lte_data(dump_path)
|
| 291 |
+
lte_fdd = dfs[0]
|
| 292 |
+
lte_tdd = dfs[1]
|
| 293 |
+
|
| 294 |
+
lte_fdd = lte_fdd[LTE_DATABASE_COLUMNS]
|
| 295 |
+
lte_tdd = lte_tdd[LTE_DATABASE_COLUMNS]
|
| 296 |
+
|
| 297 |
+
lte_db = pd.concat([lte_fdd, lte_tdd], axis=0)
|
| 298 |
+
|
| 299 |
+
# rename final_name to LNCEL_name
|
| 300 |
+
lte_db = lte_db.rename(columns={"final_name": "LNCEL_name"})
|
| 301 |
+
|
| 302 |
+
# save_dataframe(lte_db, "LTE_Database.csv")
|
| 303 |
+
return lte_db
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
def lte_bh_dfs_per_kpi(
|
| 307 |
+
dump_path: str,
|
| 308 |
+
df: pd.DataFrame,
|
| 309 |
+
number_of_kpi_days: int = 7,
|
| 310 |
+
availability_threshold: int = 95,
|
| 311 |
+
prb_usage_threshold: int = 80,
|
| 312 |
+
prb_diff_between_cells_threshold: int = 20,
|
| 313 |
+
number_of_threshold_days: int = 3,
|
| 314 |
+
) -> pd.DataFrame:
|
| 315 |
+
|
| 316 |
+
# print(df.columns)
|
| 317 |
+
|
| 318 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
| 319 |
+
df=df,
|
| 320 |
+
pivot_date_column="date",
|
| 321 |
+
pivot_name_column="LNCEL_name",
|
| 322 |
+
kpi_columns_from=2,
|
| 323 |
+
)
|
| 324 |
+
cell_availability_df = cell_availability_analysis(
|
| 325 |
+
df=pivoted_kpi_dfs["Cell_Avail_excl_BLU"],
|
| 326 |
+
days=number_of_kpi_days,
|
| 327 |
+
availability_threshold=availability_threshold,
|
| 328 |
+
)
|
| 329 |
+
# prb_usage_df = analyze_prb_usage(
|
| 330 |
+
# df=pivoted_kpi_dfs["E_UTRAN_Avg_PRB_usage_per_TTI_DL"],
|
| 331 |
+
# number_of_kpi_days=number_of_kpi_days,
|
| 332 |
+
# prb_usage_threshold=prb_usage_threshold,
|
| 333 |
+
# analysis_type="BH",
|
| 334 |
+
# number_of_threshold_days=number_of_threshold_days,
|
| 335 |
+
# )
|
| 336 |
+
prb_lev10_usage_df = analyze_prb_usage(
|
| 337 |
+
df=pivoted_kpi_dfs["DL_PRB_Util_p_TTI_Lev_10"],
|
| 338 |
+
number_of_kpi_days=number_of_kpi_days,
|
| 339 |
+
prb_usage_threshold=prb_usage_threshold,
|
| 340 |
+
analysis_type="BH",
|
| 341 |
+
number_of_threshold_days=number_of_threshold_days,
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
bh_kpi_df = pd.concat([cell_availability_df, prb_lev10_usage_df], axis=1)
|
| 345 |
+
bh_kpi_df = bh_kpi_df.reset_index()
|
| 346 |
+
prb_df = bh_kpi_df[PRB_COLUMNS]
|
| 347 |
+
|
| 348 |
+
# drop row if lnCEL_name is empty or 1
|
| 349 |
+
prb_df = prb_df[prb_df["LNCEL_name"].str.len() > 3]
|
| 350 |
+
# prb_df = prb_df.reset_index()
|
| 351 |
+
prb_df = prb_df.droplevel(level=1, axis=1) # Drop the first level (date)
|
| 352 |
+
# prb_df = prb_df.reset_index()
|
| 353 |
+
# prb_df["code"] = prb_df["LNCEL_name"].str.split("_").str[0]
|
| 354 |
+
|
| 355 |
+
lte_db = lte_database_for_capacity(dump_path)
|
| 356 |
+
|
| 357 |
+
db_and_prb = pd.merge(lte_db, prb_df, on="LNCEL_name", how="left")
|
| 358 |
+
|
| 359 |
+
# if avg_prb_usage_bh is "" then set it to "cell exists in dump but not in BH report"
|
| 360 |
+
# db_and_prb.loc[db_and_prb["avg_prb_usage_bh"].isnull(), "avg_prb_usage_bh"] = (
|
| 361 |
+
# "cell exists in dump but not in BH report"
|
| 362 |
+
# )
|
| 363 |
+
# drop row if lnCEL_name is empty or 1
|
| 364 |
+
db_and_prb = db_and_prb[db_and_prb["LNCEL_name"].str.len() > 3]
|
| 365 |
+
|
| 366 |
+
lte_analysis_df = dfs_per_band_cell(db_and_prb)
|
| 367 |
+
lte_analysis_df = lte_analysis_logic(
|
| 368 |
+
lte_analysis_df,
|
| 369 |
+
prb_usage_threshold,
|
| 370 |
+
prb_diff_between_cells_threshold,
|
| 371 |
+
)
|
| 372 |
+
lte_analysis_df = lte_analysis_df[LTE_ANALYSIS_COLUMNS]
|
| 373 |
+
|
| 374 |
+
return [bh_kpi_df, lte_analysis_df]
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def process_lte_bh_report(
|
| 378 |
+
dump_path: str,
|
| 379 |
+
bh_report_path: str,
|
| 380 |
+
num_last_days: int,
|
| 381 |
+
num_threshold_days: int,
|
| 382 |
+
availability_threshold: float,
|
| 383 |
+
prb_usage_threshold: float,
|
| 384 |
+
prb_diff_between_cells_threshold: float,
|
| 385 |
+
) -> dict:
|
| 386 |
+
"""
|
| 387 |
+
Process LTE Busy Hour report and perform capacity analysis
|
| 388 |
+
|
| 389 |
+
Args:
|
| 390 |
+
bh_report_path: Path to BH report CSV file
|
| 391 |
+
num_last_days: Number of last days for analysis
|
| 392 |
+
num_threshold_days: Number of days for threshold calculation
|
| 393 |
+
availability_threshold: Minimum required availability
|
| 394 |
+
prb_usage_threshold: Maximum allowed PRB usage
|
| 395 |
+
prb_diff_between_cells_threshold: Maximum allowed PRB usage difference between cells
|
| 396 |
+
|
| 397 |
+
Returns:
|
| 398 |
+
Dictionary containing analysis results and DataFrames
|
| 399 |
+
"""
|
| 400 |
+
LteCapacity.final_results = None
|
| 401 |
+
# lte_db_dfs = lte_database_for_capacity(dump_path)
|
| 402 |
+
|
| 403 |
+
# Read BH report
|
| 404 |
+
df = pd.read_csv(bh_report_path, delimiter=";")
|
| 405 |
+
df = kpi_naming_cleaning(df)
|
| 406 |
+
# print(df.columns)
|
| 407 |
+
df = create_hourly_date(df)
|
| 408 |
+
df = df[KPI_COLUMNS]
|
| 409 |
+
pivoted_kpi_dfs = lte_bh_dfs_per_kpi(
|
| 410 |
+
dump_path=dump_path,
|
| 411 |
+
df=df,
|
| 412 |
+
number_of_kpi_days=num_last_days,
|
| 413 |
+
availability_threshold=availability_threshold,
|
| 414 |
+
prb_usage_threshold=prb_usage_threshold,
|
| 415 |
+
prb_diff_between_cells_threshold=prb_diff_between_cells_threshold,
|
| 416 |
+
number_of_threshold_days=num_threshold_days,
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
# save_dataframe(pivoted_kpi_dfs, "LTE_BH_Report.csv")
|
| 420 |
+
return pivoted_kpi_dfs
|
utils/convert_to_excel.py
CHANGED
|
@@ -143,14 +143,31 @@ def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
|
|
| 143 |
"number_trx_per_bcf": formats["blue_light"],
|
| 144 |
"number_trx_per_site": formats["blue_light"],
|
| 145 |
}
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
else:
|
| 155 |
return {} # No formatting if format_type not matched
|
| 156 |
|
|
@@ -193,6 +210,11 @@ def convert_gsm_dfs(dfs, sheet_names) -> bytes:
|
|
| 193 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="GSM_Analysis")
|
| 194 |
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
@st.cache_data
|
| 197 |
def convert_database_dfs(dfs, sheet_names) -> bytes:
|
| 198 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="database")
|
|
|
|
| 143 |
"number_trx_per_bcf": formats["blue_light"],
|
| 144 |
"number_trx_per_site": formats["blue_light"],
|
| 145 |
}
|
| 146 |
+
elif format_type == "LTE_Analysis":
|
| 147 |
+
return {
|
| 148 |
+
"code": formats["blue"],
|
| 149 |
+
"code_sector": formats["blue"],
|
| 150 |
+
"Region": formats["blue"],
|
| 151 |
+
"site_config_band": formats["blue"],
|
| 152 |
+
"LNCEL_name_l800": formats["beurre"],
|
| 153 |
+
"LNCEL_name_l1800": formats["purple5"],
|
| 154 |
+
"LNCEL_name_l2300": formats["purple6"],
|
| 155 |
+
"LNCEL_name_l2600": formats["blue_light"],
|
| 156 |
+
"LNCEL_name_l1800s": formats["gray"],
|
| 157 |
+
"avg_prb_usage_bh_l800": formats["beurre"],
|
| 158 |
+
"avg_prb_usage_bh_l1800": formats["purple5"],
|
| 159 |
+
"avg_prb_usage_bh_l2300": formats["purple6"],
|
| 160 |
+
"avg_prb_usage_bh_l2600": formats["blue_light"],
|
| 161 |
+
"avg_prb_usage_bh_l1800s": formats["gray"],
|
| 162 |
+
"num_congested_cells": formats["orange"],
|
| 163 |
+
"num_cells": formats["orange"],
|
| 164 |
+
"num_cell_with_kpi": formats["orange"],
|
| 165 |
+
"num_down_or_no_kpi_cells": formats["orange"],
|
| 166 |
+
"prb_diff_between_cells": formats["orange"],
|
| 167 |
+
"load_balance_required": formats["orange"],
|
| 168 |
+
"congestion_comment": formats["orange"],
|
| 169 |
+
"final_comments": formats["green"],
|
| 170 |
+
}
|
| 171 |
else:
|
| 172 |
return {} # No formatting if format_type not matched
|
| 173 |
|
|
|
|
| 210 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="GSM_Analysis")
|
| 211 |
|
| 212 |
|
| 213 |
+
@st.cache_data
|
| 214 |
+
def convert_lte_analysis_dfs(dfs, sheet_names) -> bytes:
|
| 215 |
+
return _write_to_excel(dfs, sheet_names, index=True, format_type="LTE_Analysis")
|
| 216 |
+
|
| 217 |
+
|
| 218 |
@st.cache_data
|
| 219 |
def convert_database_dfs(dfs, sheet_names) -> bytes:
|
| 220 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="database")
|
utils/kpi_analysis_utils.py
CHANGED
|
@@ -538,3 +538,50 @@ def analyze_sdcch_call_blocking(
|
|
| 538 |
)
|
| 539 |
|
| 540 |
return result_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
)
|
| 539 |
|
| 540 |
return result_df
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
class LteCapacity:
|
| 544 |
+
final_results = None
|
| 545 |
+
# Next band mapping
|
| 546 |
+
next_band_mapping = {
|
| 547 |
+
"L1800": "L800",
|
| 548 |
+
"L800": "L1800",
|
| 549 |
+
"L1800/L800": "L2600",
|
| 550 |
+
"L1800/L2300/L800": "L2600",
|
| 551 |
+
"L2300/L800": "L2600",
|
| 552 |
+
"L1800/L2600/L800": "New site/Dual Beam",
|
| 553 |
+
"L1800/L2300/L2600/L800": "New site/Dual Beam",
|
| 554 |
+
"L2300": "FDD H// colocated site",
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
def analyze_prb_usage(
|
| 559 |
+
df: pd.DataFrame,
|
| 560 |
+
number_of_kpi_days: int,
|
| 561 |
+
prb_usage_threshold: int,
|
| 562 |
+
analysis_type: str,
|
| 563 |
+
number_of_threshold_days: int,
|
| 564 |
+
) -> pd.DataFrame:
|
| 565 |
+
result_df = df.copy()
|
| 566 |
+
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
|
| 567 |
+
# last_days_df = last_days_df.fillna(0)
|
| 568 |
+
|
| 569 |
+
result_df[f"avg_prb_usage_{analysis_type.lower()}"] = last_days_df.mean(
|
| 570 |
+
axis=1
|
| 571 |
+
).round(2)
|
| 572 |
+
result_df[f"max_prb_usage_{analysis_type.lower()}"] = last_days_df.max(axis=1)
|
| 573 |
+
# Count the number of days above threshold
|
| 574 |
+
result_df[f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}"] = (
|
| 575 |
+
last_days_df.apply(
|
| 576 |
+
lambda row: sum(1 for x in row if x >= prb_usage_threshold), axis=1
|
| 577 |
+
)
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
# Add the daily_prb_comment : if number_of_days_with_prb_usage_exceeded_daily is >= number_of_threshold_days : prb usage exceeded threshold , else : None
|
| 581 |
+
result_df[f"prb_usage_{analysis_type.lower()}_comment"] = np.where(
|
| 582 |
+
result_df[f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}"]
|
| 583 |
+
>= number_of_threshold_days,
|
| 584 |
+
"PRB usage exceeded threshold",
|
| 585 |
+
None,
|
| 586 |
+
)
|
| 587 |
+
return result_df
|