LTE capacity 1st commit
Browse files- app.py +8 -0
- apps/kpi_analysis/gsm_capacity.py +25 -2
- apps/kpi_analysis/lte_capacity.py +207 -0
- assets/lte_capacity.png +0 -0
- documentations/lte_capacity_docs.py +221 -0
- process_kpi/lte_kpi_requirements.md +46 -0
- process_kpi/process_lte_capacity.py +420 -0
- utils/convert_to_excel.py +30 -8
- utils/kpi_analysis_utils.py +47 -0
app.py
CHANGED
@@ -142,6 +142,10 @@ if check_password():
|
|
142 |
"apps/kpi_analysis/gsm_capacity.py",
|
143 |
title=" ๐ GSM Capacity Analysis",
|
144 |
),
|
|
|
|
|
|
|
|
|
145 |
],
|
146 |
"Documentations": [
|
147 |
st.Page(
|
@@ -154,6 +158,10 @@ if check_password():
|
|
154 |
"documentations/gsm_capacity_docs.py",
|
155 |
title="๐GSM Capacity Documentation",
|
156 |
),
|
|
|
|
|
|
|
|
|
157 |
],
|
158 |
}
|
159 |
|
|
|
142 |
"apps/kpi_analysis/gsm_capacity.py",
|
143 |
title=" ๐ GSM Capacity Analysis",
|
144 |
),
|
145 |
+
st.Page(
|
146 |
+
"apps/kpi_analysis/lte_capacity.py",
|
147 |
+
title=" ๐ LTE Capacity Analysis",
|
148 |
+
),
|
149 |
],
|
150 |
"Documentations": [
|
151 |
st.Page(
|
|
|
158 |
"documentations/gsm_capacity_docs.py",
|
159 |
title="๐GSM Capacity Documentation",
|
160 |
),
|
161 |
+
st.Page(
|
162 |
+
"documentations/lte_capacity_docs.py",
|
163 |
+
title="๐LTE Capacity Documentation",
|
164 |
+
),
|
165 |
],
|
166 |
}
|
167 |
|
apps/kpi_analysis/gsm_capacity.py
CHANGED
@@ -2,11 +2,11 @@ import pandas as pd
|
|
2 |
import plotly.express as px
|
3 |
import streamlit as st
|
4 |
|
5 |
-
from process_kpi.process_gsm_capacity import
|
6 |
from utils.convert_to_excel import ( # Import convert_dfs from the appropriate module
|
7 |
-
convert_dfs,
|
8 |
convert_gsm_dfs,
|
9 |
)
|
|
|
10 |
|
11 |
st.title(" ๐ GSM Capacity Analysis")
|
12 |
doc_col, image_col = st.columns(2)
|
@@ -241,3 +241,26 @@ if (
|
|
241 |
textposition="outside",
|
242 |
)
|
243 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import plotly.express as px
|
3 |
import streamlit as st
|
4 |
|
5 |
+
from process_kpi.process_gsm_capacity import analyze_gsm_data
|
6 |
from utils.convert_to_excel import ( # Import convert_dfs from the appropriate module
|
|
|
7 |
convert_gsm_dfs,
|
8 |
)
|
9 |
+
from utils.kpi_analysis_utils import GsmCapacity
|
10 |
|
11 |
st.title(" ๐ GSM Capacity Analysis")
|
12 |
doc_col, image_col = st.columns(2)
|
|
|
241 |
textposition="outside",
|
242 |
)
|
243 |
st.plotly_chart(fig, use_container_width=True)
|
244 |
+
|
245 |
+
# create a map plotly with gsm_analysis_df and max_tch_call_blocking_bh
|
246 |
+
st.markdown("***")
|
247 |
+
st.markdown(":blue[**Max TCH Call Blocking BH distribution**]")
|
248 |
+
fig = px.scatter_mapbox(
|
249 |
+
gsm_analysis_df.dropna(
|
250 |
+
subset=["max_tch_call_blocking_bh", "Latitude", "Longitude"]
|
251 |
+
),
|
252 |
+
lat="Latitude",
|
253 |
+
lon="Longitude",
|
254 |
+
color=[
|
255 |
+
"red" if val > tch_blocking_threshold else "green"
|
256 |
+
for val in gsm_analysis_df[
|
257 |
+
"max_tch_call_blocking_bh"
|
258 |
+
].dropna() # .values
|
259 |
+
],
|
260 |
+
size="max_tch_call_blocking_bh",
|
261 |
+
zoom=10,
|
262 |
+
height=600,
|
263 |
+
title="Max TCH Call Blocking BH distribution",
|
264 |
+
)
|
265 |
+
fig.update_layout(mapbox_style="open-street-map")
|
266 |
+
st.plotly_chart(fig, use_container_width=True)
|
apps/kpi_analysis/lte_capacity.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from process_kpi.process_lte_capacity import process_lte_bh_report
|
6 |
+
from utils.convert_to_excel import convert_lte_analysis_dfs
|
7 |
+
from utils.kpi_analysis_utils import LteCapacity
|
8 |
+
|
9 |
+
st.title("๐ LTE Capacity Analysis")
|
10 |
+
doc_col, image_col = st.columns(2)
|
11 |
+
|
12 |
+
with doc_col:
|
13 |
+
st.write(
|
14 |
+
"""
|
15 |
+
The report analyzes LTE capacity based on:
|
16 |
+
- Dump file required
|
17 |
+
- BH Cell level KPI report in CSV format
|
18 |
+
- Availability and PRB usage thresholds
|
19 |
+
"""
|
20 |
+
)
|
21 |
+
|
22 |
+
with image_col:
|
23 |
+
st.image("./assets/lte_capacity.png", width=250)
|
24 |
+
|
25 |
+
file1, file2 = st.columns(2)
|
26 |
+
|
27 |
+
with file1:
|
28 |
+
uploaded_dump = st.file_uploader("Upload Dump file in xlsb format", type="xlsb")
|
29 |
+
with file2:
|
30 |
+
uploaded_bh_report = st.file_uploader(
|
31 |
+
"Upload LTE Busy Hour Report in CSV format", type="csv"
|
32 |
+
)
|
33 |
+
|
34 |
+
# Parameters
|
35 |
+
param_col1, param_col2 = st.columns(2)
|
36 |
+
param_col3, param_col4 = st.columns(2)
|
37 |
+
|
38 |
+
with param_col1:
|
39 |
+
num_last_days = st.number_input(
|
40 |
+
"Number of last days for analysis", value=7, min_value=1
|
41 |
+
)
|
42 |
+
|
43 |
+
with param_col2:
|
44 |
+
num_threshold_days = st.number_input(
|
45 |
+
"Number of days for threshold", value=3, min_value=1
|
46 |
+
)
|
47 |
+
|
48 |
+
with param_col3:
|
49 |
+
availability_threshold = st.number_input(
|
50 |
+
"Availability threshold (%)", value=95.0, min_value=0.0, max_value=100.0
|
51 |
+
)
|
52 |
+
|
53 |
+
with param_col4:
|
54 |
+
prb_usage_threshold = st.number_input(
|
55 |
+
"PRB usage threshold (%)", value=80.0, min_value=0.0, max_value=100.0
|
56 |
+
)
|
57 |
+
|
58 |
+
prb_diff_between_cells = st.number_input(
|
59 |
+
"Maximum PRB usage difference between cells (%)",
|
60 |
+
value=20.0,
|
61 |
+
min_value=0.0,
|
62 |
+
max_value=100.0,
|
63 |
+
)
|
64 |
+
|
65 |
+
if uploaded_dump is not None and uploaded_bh_report is not None:
|
66 |
+
if st.button("Analyze Data", type="primary"):
|
67 |
+
with st.spinner("Processing data..."):
|
68 |
+
results = process_lte_bh_report(
|
69 |
+
dump_path=uploaded_dump,
|
70 |
+
bh_report_path=uploaded_bh_report,
|
71 |
+
num_last_days=num_last_days,
|
72 |
+
num_threshold_days=num_threshold_days,
|
73 |
+
availability_threshold=availability_threshold,
|
74 |
+
prb_usage_threshold=prb_usage_threshold,
|
75 |
+
prb_diff_between_cells_threshold=prb_diff_between_cells,
|
76 |
+
)
|
77 |
+
if results is not None:
|
78 |
+
bh_report: pd.DataFrame = results[0]
|
79 |
+
lte_analysis_df: pd.DataFrame = results[1]
|
80 |
+
LteCapacity.final_results = convert_lte_analysis_dfs(
|
81 |
+
[lte_analysis_df, bh_report], ["LTE_Analysis", "LTE_BH_Report"]
|
82 |
+
)
|
83 |
+
st.download_button(
|
84 |
+
on_click="ignore",
|
85 |
+
type="primary",
|
86 |
+
label="Download the Analysis Report",
|
87 |
+
data=LteCapacity.final_results,
|
88 |
+
file_name="LTE_Analysis_Report.xlsx",
|
89 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
90 |
+
)
|
91 |
+
st.write(lte_analysis_df)
|
92 |
+
# Add dataframe and Pie chart with "final_comments" distribution
|
93 |
+
st.markdown("***")
|
94 |
+
st.markdown(":blue[**Final comment distribution**]")
|
95 |
+
final_comments_df = (
|
96 |
+
lte_analysis_df.groupby("final_comments")
|
97 |
+
.size()
|
98 |
+
.reset_index(name="count")
|
99 |
+
.sort_values(by="count", ascending=False)
|
100 |
+
)
|
101 |
+
final_comments_col1, final_comments_col2 = st.columns((1, 3))
|
102 |
+
with final_comments_col1:
|
103 |
+
st.write(final_comments_df)
|
104 |
+
with final_comments_col2:
|
105 |
+
fig = px.pie(
|
106 |
+
final_comments_df,
|
107 |
+
names="final_comments",
|
108 |
+
values="count",
|
109 |
+
hover_name="final_comments",
|
110 |
+
hover_data=["count"],
|
111 |
+
title="Final comment distribution",
|
112 |
+
)
|
113 |
+
fig.update_layout(height=600)
|
114 |
+
fig.update_traces(
|
115 |
+
texttemplate="%{label}: %{value}",
|
116 |
+
textfont_size=15,
|
117 |
+
textposition="outside",
|
118 |
+
)
|
119 |
+
st.plotly_chart(fig, use_container_width=True)
|
120 |
+
# Add dataframe and Pie chart with "final_comments" distribution where num_congested_cells > 0
|
121 |
+
st.markdown("***")
|
122 |
+
st.markdown(":blue[**Congested cells distribution**]")
|
123 |
+
congested_cells_df = (
|
124 |
+
lte_analysis_df[lte_analysis_df["num_congested_cells"] > 0]
|
125 |
+
.groupby("final_comments")
|
126 |
+
.size()
|
127 |
+
.reset_index(name="count")
|
128 |
+
.sort_values(by="count", ascending=False)
|
129 |
+
)
|
130 |
+
congested_cells_col1, congested_cells_col2 = st.columns((1, 3))
|
131 |
+
with congested_cells_col1:
|
132 |
+
st.write(congested_cells_df)
|
133 |
+
with congested_cells_col2:
|
134 |
+
fig = px.pie(
|
135 |
+
congested_cells_df,
|
136 |
+
names="final_comments",
|
137 |
+
values="count",
|
138 |
+
hover_name="final_comments",
|
139 |
+
hover_data=["count"],
|
140 |
+
title="Congested cells distribution",
|
141 |
+
)
|
142 |
+
fig.update_layout(height=600)
|
143 |
+
fig.update_traces(
|
144 |
+
texttemplate="%{label}: %{value}",
|
145 |
+
textfont_size=15,
|
146 |
+
textposition="outside",
|
147 |
+
)
|
148 |
+
st.plotly_chart(fig, use_container_width=True)
|
149 |
+
|
150 |
+
# Add dataframe and Bar chart with "final_comments" distribution where num_congested_cells > 0 per Region
|
151 |
+
st.markdown("***")
|
152 |
+
st.markdown(":blue[**Congested cells distribution per Region**]")
|
153 |
+
congested_cells_region_df = (
|
154 |
+
lte_analysis_df[lte_analysis_df["num_congested_cells"] > 0]
|
155 |
+
.groupby(["Region", "final_comments"])
|
156 |
+
.size()
|
157 |
+
.reset_index(name="count")
|
158 |
+
.sort_values(by="count", ascending=False)
|
159 |
+
)
|
160 |
+
congested_cells_region_col1, congested_cells_region_col2 = st.columns(
|
161 |
+
(1, 3)
|
162 |
+
)
|
163 |
+
with congested_cells_region_col1:
|
164 |
+
st.write(congested_cells_region_df)
|
165 |
+
with congested_cells_region_col2:
|
166 |
+
fig = px.bar(
|
167 |
+
congested_cells_region_df,
|
168 |
+
x="Region",
|
169 |
+
y="count",
|
170 |
+
color="final_comments",
|
171 |
+
title="Congested cells distribution per Region",
|
172 |
+
)
|
173 |
+
fig.update_layout(height=600)
|
174 |
+
fig.update_traces(
|
175 |
+
texttemplate="%{value}", textfont_size=15, textposition="outside"
|
176 |
+
)
|
177 |
+
st.plotly_chart(fig, use_container_width=True)
|
178 |
+
# Add dataframe and Bar chart with "final_comments" distribution where num_congested_cells > 0 per Region groupby region
|
179 |
+
st.markdown("***")
|
180 |
+
st.markdown(
|
181 |
+
":blue[**Congested cells distribution per Region groupby Region**]"
|
182 |
+
)
|
183 |
+
congested_cells_region_groupby_region_df = (
|
184 |
+
lte_analysis_df[lte_analysis_df["num_congested_cells"] > 0]
|
185 |
+
.groupby(["Region"])
|
186 |
+
.size()
|
187 |
+
.reset_index(name="count")
|
188 |
+
.sort_values(by="count", ascending=False)
|
189 |
+
)
|
190 |
+
(
|
191 |
+
congested_cells_region_groupby_region_col1,
|
192 |
+
congested_cells_region_groupby_region_col2,
|
193 |
+
) = st.columns((1, 3))
|
194 |
+
with congested_cells_region_groupby_region_col1:
|
195 |
+
st.write(congested_cells_region_groupby_region_df)
|
196 |
+
with congested_cells_region_groupby_region_col2:
|
197 |
+
fig = px.bar(
|
198 |
+
congested_cells_region_groupby_region_df,
|
199 |
+
x="Region",
|
200 |
+
y="count",
|
201 |
+
title="Congested cells distribution per Region groupby Region",
|
202 |
+
)
|
203 |
+
fig.update_layout(height=600)
|
204 |
+
fig.update_traces(
|
205 |
+
texttemplate="%{value}", textfont_size=15, textposition="outside"
|
206 |
+
)
|
207 |
+
st.plotly_chart(fig, use_container_width=True)
|
assets/lte_capacity.png
ADDED
![]() |
documentations/lte_capacity_docs.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.markdown(
|
4 |
+
"""
|
5 |
+
# LTE Capacity Analysis Documentation
|
6 |
+
|
7 |
+
This documentation provides a technical and practical reference for the LTE Capacity Analysis application, detailing input/output columns, processing workflow, and key metrics as implemented in:
|
8 |
+
- apps/kpi_analysis/lte_capacity.py
|
9 |
+
- process_kpi/process_lte_capacity.py
|
10 |
+
- utils/kpi_analysis_utils.py
|
11 |
+
|
12 |
+
---
|
13 |
+
|
14 |
+
## 1. Input Files and Expected Columns
|
15 |
+
|
16 |
+
### a. Dump File (XLSB)
|
17 |
+
- Contains network configuration and site data.
|
18 |
+
- Expected columns (see `LTE_DATABASE_COLUMNS` in `process_lte_capacity.py`):
|
19 |
+
- code: Unique site identifier
|
20 |
+
- Region: Geographical region of the site
|
21 |
+
- site_config_band: Configured frequency bands at the site
|
22 |
+
- final_name: Formatted site name
|
23 |
+
|
24 |
+
### b. Busy Hour (BH) KPI Report (CSV)
|
25 |
+
- Contains performance metrics for LTE cells during busy hours.
|
26 |
+
- Key columns (see `KPI_COLUMNS` in `process_lte_capacity.py`):
|
27 |
+
- date: Timestamp of the measurement
|
28 |
+
- LNCEL_name: Cell identifier (format: SiteName_LBand_CellID)
|
29 |
+
- Cell_Avail_excl_BLU: Cell availability percentage excluding BLU
|
30 |
+
- E_UTRAN_Avg_PRB_usage_per_TTI_DL: Average Physical Resource Block usage in downlink
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
## 2. Output Columns and Their Meaning
|
35 |
+
|
36 |
+
### a. LTE Analysis Output (`LTE_ANALYSIS_COLUMNS`):
|
37 |
+
- **Site Information**:
|
38 |
+
- code: Site identifier
|
39 |
+
- Region: Geographical region
|
40 |
+
- site_config_band: Configured frequency bands
|
41 |
+
|
42 |
+
- **Cell Configuration**:
|
43 |
+
- LNCEL_name_l800: Cell name for 800MHz band
|
44 |
+
- LNCEL_name_l1800: Cell name for 1800MHz band
|
45 |
+
- LNCEL_name_l2300: Cell name for 2300MHz band
|
46 |
+
- LNCEL_name_l2600: Cell name for 2600MHz band
|
47 |
+
- LNCEL_name_l1800s: Cell name for 1800MHz supplementary band
|
48 |
+
|
49 |
+
- **PRB Usage Metrics**:
|
50 |
+
- avg_prb_usage_bh_l800: Average PRB usage for 800MHz band
|
51 |
+
- avg_prb_usage_bh_l1800: Average PRB usage for 1800MHz band
|
52 |
+
- avg_prb_usage_bh_l2300: Average PRB usage for 2300MHz band
|
53 |
+
- avg_prb_usage_bh_l2600: Average PRB usage for 2600MHz band
|
54 |
+
- avg_prb_usage_bh_l1800s: Average PRB usage for 1800s band
|
55 |
+
|
56 |
+
- **Cell Status**:
|
57 |
+
- num_congested_cells: Number of cells exceeding PRB usage threshold
|
58 |
+
- num_cells: Total number of cells at the site
|
59 |
+
- num_cell_with_kpi: Number of cells with valid KPI data
|
60 |
+
- num_down_or_no_kpi_cells: Number of down or non-reporting cells
|
61 |
+
- prb_diff_between_cells: Maximum PRB usage difference between cells at the site
|
62 |
+
- load_balance_required: Flag indicating if load balancing is needed
|
63 |
+
|
64 |
+
- **Analysis Results**:
|
65 |
+
- congestion_comment: Comments on cell congestion status
|
66 |
+
- final_comments: Summary of site status and recommendations
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
+
## 3. Processing Workflow
|
71 |
+
|
72 |
+
1. **Data Loading and Validation**:
|
73 |
+
- Load and validate the dump file and BH report
|
74 |
+
- Check for required columns and data integrity
|
75 |
+
|
76 |
+
2. **Data Processing**:
|
77 |
+
- Parse site and cell information from the dump file
|
78 |
+
- Process KPI data from the BH report
|
79 |
+
- Calculate average PRB usage per cell and band
|
80 |
+
|
81 |
+
3. **Analysis**:
|
82 |
+
- Identify congested cells based on PRB usage threshold
|
83 |
+
- Calculate load balancing requirements
|
84 |
+
- Determine site-level congestion status
|
85 |
+
- Generate recommendations for capacity expansion
|
86 |
+
|
87 |
+
4. **Reporting**:
|
88 |
+
- Combine all analysis results into a comprehensive DataFrame
|
89 |
+
- Generate final comments and recommendations
|
90 |
+
- Prepare data for visualization and export
|
91 |
+
|
92 |
+
---
|
93 |
+
|
94 |
+
## 4. Key Functions
|
95 |
+
|
96 |
+
### a. `process_lte_bh_report` (in `process_lte_capacity.py`)
|
97 |
+
- Main function that orchestrates the LTE capacity analysis
|
98 |
+
- Parameters:
|
99 |
+
- dump_path: Path to the site dump file
|
100 |
+
- bh_report_path: Path to the Busy Hour KPI report
|
101 |
+
- num_last_days: Number of days to analyze
|
102 |
+
- num_threshold_days: Number of days for threshold calculations
|
103 |
+
- availability_threshold: Minimum required cell availability (%)
|
104 |
+
- prb_usage_threshold: Threshold for PRB usage (%)
|
105 |
+
- prb_diff_between_cells_threshold: Maximum allowed PRB difference between cells (%)
|
106 |
+
|
107 |
+
### b. `lte_analysis_logic` (in `process_lte_capacity.py`)
|
108 |
+
- Core logic for analyzing LTE capacity
|
109 |
+
- Identifies congested cells and calculates load balancing requirements
|
110 |
+
- Generates comments and recommendations
|
111 |
+
### c. analyze_prb_usage (in kpi_analysis_utils.py)
|
112 |
+
- Analyzes PRB usage patterns
|
113 |
+
- Identifies cells with high PRB utilization
|
114 |
+
- Generates comments on congestion status
|
115 |
+
|
116 |
+
### d. cell_availability_analysis (in kpi_analysis_utils.py)
|
117 |
+
- Analyzes cell availability metrics
|
118 |
+
- Identifies cells with availability issues
|
119 |
+
- Generates availability-related comments
|
120 |
+
|
121 |
+
---
|
122 |
+
|
123 |
+
## 5. Configuration Parameters
|
124 |
+
|
125 |
+
### a. Band Mapping (from LteCapacity class):
|
126 |
+
- Defines the recommended next band for capacity expansion
|
127 |
+
- Example: L1800 โ L800, L800 โ L1800, etc.
|
128 |
+
|
129 |
+
### b. Thresholds (configurable via UI/parameters):
|
130 |
+
- Availability Threshold: Default 95%
|
131 |
+
- PRB Usage Threshold: Default 80%
|
132 |
+
- PRB Difference Threshold: Default 20%
|
133 |
+
- Analysis Period: Default 7 days
|
134 |
+
- Threshold Days: Default 3 days
|
135 |
+
|
136 |
+
---
|
137 |
+
|
138 |
+
## 6. Example Usage and Output Analysis
|
139 |
+
|
140 |
+
### Basic Usage
|
141 |
+
```python
|
142 |
+
from process_kpi.process_lte_capacity import process_lte_bh_report
|
143 |
+
import pandas as pd
|
144 |
+
|
145 |
+
# Process LTE capacity analysis
|
146 |
+
results = process_lte_bh_report(
|
147 |
+
dump_path="network_dump_202305.xlsb",
|
148 |
+
bh_report_path="lte_bh_report_20230501_20230507.csv",
|
149 |
+
num_last_days=7, # Analyze last 7 days
|
150 |
+
num_threshold_days=3, # Consider threshold violations if seen on โฅ3 days
|
151 |
+
availability_threshold=95.0, # Minimum acceptable cell availability (%)
|
152 |
+
prb_usage_threshold=80.0, # PRB usage threshold for congestion (%)
|
153 |
+
prb_diff_between_cells_threshold=20.0 # Max allowed PRB difference between cells (%)
|
154 |
+
)
|
155 |
+
|
156 |
+
# Unpack results
|
157 |
+
bh_report_df, lte_analysis_df = results
|
158 |
+
|
159 |
+
# Example: Display sites with congestion
|
160 |
+
congested_sites = lte_analysis_df[lte_analysis_df['num_congested_cells'] > 0]
|
161 |
+
print(f"Found {len(congested_sites)} sites with congestion")
|
162 |
+
|
163 |
+
# Example: Export results to Excel
|
164 |
+
with pd.ExcelWriter('lte_capacity_analysis.xlsx') as writer:
|
165 |
+
lte_analysis_df.to_excel(writer, sheet_name='LTE_Analysis', index=False)
|
166 |
+
bh_report_df.to_excel(writer, sheet_name='BH_Report', index=False)
|
167 |
+
```
|
168 |
+
|
169 |
+
### Understanding the Output
|
170 |
+
- `lte_analysis_df`: Contains per-site analysis with capacity recommendations
|
171 |
+
- `bh_report_df`: Raw busy hour metrics for detailed investigation
|
172 |
+
|
173 |
+
|
174 |
+
## 7. Column Reference Table
|
175 |
+
|
176 |
+
### Site Information
|
177 |
+
| Column | Type | Description | Example |
|
178 |
+
|--------|------|-------------|---------|
|
179 |
+
| code | str | Unique site identifier | SITE123 |
|
180 |
+
| Region | str | Mali Geographical region | CENTRAL |
|
181 |
+
| site_config_band | str | Configured frequency bands | L1800/L800 |
|
182 |
+
|
183 |
+
### Cell Configuration
|
184 |
+
| Column | Type | Description | Example |
|
185 |
+
|--------|------|-------------|---------|
|
186 |
+
| LNCEL_name_l800 | str | 800MHz cell name | SITE123_L800_1 |
|
187 |
+
| LNCEL_name_l1800 | str | 1800MHz cell name | SITE123_L1800_1 |
|
188 |
+
| LNCEL_name_l2300 | str | 2300MHz cell name | SITE123_L2300_1 |
|
189 |
+
| LNCEL_name_l2600 | str | 2600MHz cell name | SITE123_L2600_1 |
|
190 |
+
| LNCEL_name_l1800s | str | 1800s cell name | SITE123_L1800S_1 |
|
191 |
+
|
192 |
+
### PRB Usage Metrics
|
193 |
+
| Column | Type | Description | Range |
|
194 |
+
|--------|------|-------------|-------|
|
195 |
+
| avg_prb_usage_bh_l800 | float | Avg PRB usage 800MHz | 0-100% |
|
196 |
+
| avg_prb_usage_bh_l1800 | float | Avg PRB usage 1800MHz | 0-100% |
|
197 |
+
| avg_prb_usage_bh_l2300 | float | Avg PRB usage 2300MHz | 0-100% |
|
198 |
+
| avg_prb_usage_bh_l2600 | float | Avg PRB usage 2600MHz | 0-100% |
|
199 |
+
| avg_prb_usage_bh_l1800s | float | Avg PRB usage 1800s | 0-100% |
|
200 |
+
|
201 |
+
### Cell Status
|
202 |
+
| Column | Type | Description |
|
203 |
+
|--------|------|-------------|
|
204 |
+
| num_cells | int | Total cells at site |
|
205 |
+
| num_cell_with_kpi | int | Cells with valid KPI data |
|
206 |
+
| num_down_or_no_kpi_cells | int | Non-reporting cells |
|
207 |
+
| num_congested_cells | int | Cells exceeding PRB threshold |
|
208 |
+
| prb_diff_between_cells | float | Max PRB difference between cells |
|
209 |
+
| load_balance_required | bool | If load balancing is needed |
|
210 |
+
|
211 |
+
### Analysis Results
|
212 |
+
| Column | Type | Description |
|
213 |
+
|--------|------|-------------|
|
214 |
+
| congestion_comment | str | Analysis of congestion status |
|
215 |
+
| final_comments | str | Summary and recommendations |
|
216 |
+
| recommended_action | str | Suggested capacity actions |
|
217 |
+
| next_band | str | Recommended band for expansion |
|
218 |
+
|
219 |
+
|
220 |
+
"""
|
221 |
+
)
|
process_kpi/lte_kpi_requirements.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LTE CAPACITY REPORT
|
2 |
+
|
3 |
+
Based on gsm and wcdma exemple let's build LTE capacity report
|
4 |
+
|
5 |
+
## Required Input
|
6 |
+
|
7 |
+
- File : LTE BH report with columns :
|
8 |
+
- PERIOD_START_TIME
|
9 |
+
- MRBTS/SBTS name
|
10 |
+
- LNBTS name
|
11 |
+
- LNCEL name
|
12 |
+
- DN
|
13 |
+
- Cell Avail excl BLU
|
14 |
+
- E-UTRAN Avg PRB usage per TTI DL
|
15 |
+
- Number of last day for the analysis
|
16 |
+
- Number of days for threshold
|
17 |
+
- Availability threshold
|
18 |
+
- PRB usage per TTI DL threshold
|
19 |
+
- Max difference between PRB usage over cells of the same BTS
|
20 |
+
|
21 |
+
### TASK
|
22 |
+
|
23 |
+
- Pivot KPI in BH report per KPI (Cell Avail excl BLU, E-UTRAN Avg PRB usage per TTI DL)
|
24 |
+
- Calculate Average and Max of PRB usage per TTI DL
|
25 |
+
- Calculate Average and Max of Cell Avail excl BLU
|
26 |
+
- Count number of Days with Cell Avail excl BLU below Availability threshold
|
27 |
+
- Count number of Days with PRB usage per TTI DL exceeded PRB usage per TTI DL threshold
|
28 |
+
- Create separate DF per sector and band based on LNCEL name
|
29 |
+
- _1_L800: column_name = Sector_1_L800
|
30 |
+
- _2_L800: column_name = Sector_2_L800
|
31 |
+
- _3_L800: column_name = Sector_3_L800
|
32 |
+
- _1_L1800: column_name = Sector_1_L1800
|
33 |
+
- _2_L1800: column_name = Sector_2_L1800
|
34 |
+
- _3_L1800: column_name = Sector_3_L1800
|
35 |
+
- _1_L2300: column_name = Sector_1_L2300
|
36 |
+
- _2_L2300: column_name = Sector_2_L2300
|
37 |
+
- _3_L2300: column_name = Sector_3_L2300
|
38 |
+
- _1_L2600: column_name = Sector_1_L2600
|
39 |
+
- _2_L2600: column_name = Sector_2_L2600
|
40 |
+
- _3_L2600: column_name = Sector_3_L2600
|
41 |
+
- _1S_L1800: column_name = Sector_1S_L1800
|
42 |
+
- _2S_L1800: column_name = Sector_2S_L1800
|
43 |
+
- _3S_L1800: column_name = Sector_3S_L1800
|
44 |
+
- Merge DFs per sector LNBTS name
|
45 |
+
- Concat dfs per Bands
|
46 |
+
|
process_kpi/process_lte_capacity.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
from queries.process_lte import process_lte_data
|
5 |
+
from utils.convert_to_excel import save_dataframe
|
6 |
+
from utils.kpi_analysis_utils import (
|
7 |
+
LteCapacity,
|
8 |
+
analyze_prb_usage,
|
9 |
+
cell_availability_analysis,
|
10 |
+
create_dfs_per_kpi,
|
11 |
+
create_hourly_date,
|
12 |
+
kpi_naming_cleaning,
|
13 |
+
)
|
14 |
+
|
15 |
+
LTE_ANALYSIS_COLUMNS = [
|
16 |
+
"code",
|
17 |
+
"code_sector",
|
18 |
+
"Region",
|
19 |
+
"site_config_band",
|
20 |
+
"LNCEL_name_l800",
|
21 |
+
"LNCEL_name_l1800",
|
22 |
+
"LNCEL_name_l2300",
|
23 |
+
"LNCEL_name_l2600",
|
24 |
+
"LNCEL_name_l1800s",
|
25 |
+
"avg_prb_usage_bh_l800",
|
26 |
+
"avg_prb_usage_bh_l1800",
|
27 |
+
"avg_prb_usage_bh_l2300",
|
28 |
+
"avg_prb_usage_bh_l2600",
|
29 |
+
"avg_prb_usage_bh_l1800s",
|
30 |
+
"num_congested_cells",
|
31 |
+
"num_cells",
|
32 |
+
"num_cell_with_kpi",
|
33 |
+
"num_down_or_no_kpi_cells",
|
34 |
+
"prb_diff_between_cells",
|
35 |
+
"load_balance_required",
|
36 |
+
"congestion_comment",
|
37 |
+
"final_comments",
|
38 |
+
]
|
39 |
+
|
40 |
+
LTE_DATABASE_COLUMNS = [
|
41 |
+
"code",
|
42 |
+
"Region",
|
43 |
+
"site_config_band",
|
44 |
+
"final_name",
|
45 |
+
]
|
46 |
+
|
47 |
+
KPI_COLUMNS = [
|
48 |
+
"date",
|
49 |
+
"LNCEL_name",
|
50 |
+
"Cell_Avail_excl_BLU",
|
51 |
+
"E_UTRAN_Avg_PRB_usage_per_TTI_DL",
|
52 |
+
"DL_PRB_Util_p_TTI_Lev_10",
|
53 |
+
]
|
54 |
+
PRB_COLUMNS = [
|
55 |
+
"LNCEL_name",
|
56 |
+
"avg_prb_usage_bh",
|
57 |
+
# "avg_prb_usage_bh_lev_10",
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
def lte_analysis_logic(
|
62 |
+
df: pd.DataFrame,
|
63 |
+
prb_usage_threshold: int,
|
64 |
+
prb_diff_between_cells_threshold: int,
|
65 |
+
) -> pd.DataFrame:
|
66 |
+
lte_analysis_logic_df = df.copy()
|
67 |
+
lte_analysis_logic_df["num_congested_cells"] = (
|
68 |
+
lte_analysis_logic_df[
|
69 |
+
[
|
70 |
+
"avg_prb_usage_bh_l800",
|
71 |
+
"avg_prb_usage_bh_l1800",
|
72 |
+
"avg_prb_usage_bh_l2300",
|
73 |
+
"avg_prb_usage_bh_l2600",
|
74 |
+
"avg_prb_usage_bh_l1800s",
|
75 |
+
]
|
76 |
+
]
|
77 |
+
>= prb_usage_threshold
|
78 |
+
).sum(axis=1)
|
79 |
+
|
80 |
+
# Add Number of cells LNCEL_name_l800 LNCEL_name_l1800 LNCEL_name_l2300 LNCEL_name_l2600 LNCEL_name_l1800s
|
81 |
+
lte_analysis_logic_df["num_cells"] = lte_analysis_logic_df[
|
82 |
+
[
|
83 |
+
"LNCEL_name_l800",
|
84 |
+
"LNCEL_name_l1800",
|
85 |
+
"LNCEL_name_l2300",
|
86 |
+
"LNCEL_name_l2600",
|
87 |
+
"LNCEL_name_l1800s",
|
88 |
+
]
|
89 |
+
].count(axis=1)
|
90 |
+
|
91 |
+
# Add Number of cell with KPI
|
92 |
+
lte_analysis_logic_df["num_cell_with_kpi"] = lte_analysis_logic_df[
|
93 |
+
[
|
94 |
+
"avg_prb_usage_bh_l800",
|
95 |
+
"avg_prb_usage_bh_l1800",
|
96 |
+
"avg_prb_usage_bh_l2300",
|
97 |
+
"avg_prb_usage_bh_l2600",
|
98 |
+
"avg_prb_usage_bh_l1800s",
|
99 |
+
]
|
100 |
+
].count(axis=1)
|
101 |
+
|
102 |
+
# Number of Down or No KPI cells = num_cells -num_cell_with_kpi
|
103 |
+
lte_analysis_logic_df["num_down_or_no_kpi_cells"] = (
|
104 |
+
lte_analysis_logic_df["num_cells"] - lte_analysis_logic_df["num_cell_with_kpi"]
|
105 |
+
)
|
106 |
+
|
107 |
+
# Check Max difference between avg_prb_usage_bh_l800 avg_prb_usage_bh_l1800 avg_prb_usage_bh_l2300 avg_prb_usage_bh_l2600 avg_prb_usage_bh_l1800s
|
108 |
+
lte_analysis_logic_df["prb_diff_between_cells"] = lte_analysis_logic_df[
|
109 |
+
[
|
110 |
+
"avg_prb_usage_bh_l800",
|
111 |
+
"avg_prb_usage_bh_l1800",
|
112 |
+
"avg_prb_usage_bh_l2300",
|
113 |
+
"avg_prb_usage_bh_l2600",
|
114 |
+
"avg_prb_usage_bh_l1800s",
|
115 |
+
]
|
116 |
+
].apply(lambda row: max(row) - min(row), axis=1)
|
117 |
+
|
118 |
+
# Add Load balance required column = Yes if prb_diff_between_cells > prb_diff_between_cells_threshold else No
|
119 |
+
lte_analysis_logic_df["load_balance_required"] = lte_analysis_logic_df[
|
120 |
+
"prb_diff_between_cells"
|
121 |
+
].apply(lambda x: "Yes" if x > prb_diff_between_cells_threshold else "No")
|
122 |
+
|
123 |
+
# Add Next band column
|
124 |
+
lte_analysis_logic_df["next_band"] = lte_analysis_logic_df["site_config_band"].map(
|
125 |
+
LteCapacity.next_band_mapping
|
126 |
+
)
|
127 |
+
|
128 |
+
# Add congestion comments
|
129 |
+
# if num_congested_cells == 0 and num_down_or_no_kpi_cells == 0 = " No Congestion"
|
130 |
+
# if num_congested_cells == 0 and num_down_or_no_kpi_cells > 0 = "No congestion but Down cell"
|
131 |
+
# if num_congested_cells > 0 and num_down_or_no_kpi_cells > 0 = "Congestion but Colocated Down Cell"
|
132 |
+
# Else Need Action
|
133 |
+
conditions = [
|
134 |
+
(lte_analysis_logic_df["num_congested_cells"] == 0)
|
135 |
+
& (lte_analysis_logic_df["num_down_or_no_kpi_cells"] == 0),
|
136 |
+
(lte_analysis_logic_df["num_congested_cells"] == 0)
|
137 |
+
& (lte_analysis_logic_df["num_down_or_no_kpi_cells"] > 0),
|
138 |
+
(lte_analysis_logic_df["num_congested_cells"] > 0)
|
139 |
+
& (lte_analysis_logic_df["num_down_or_no_kpi_cells"] > 0),
|
140 |
+
]
|
141 |
+
|
142 |
+
choices = [
|
143 |
+
"No Congestion",
|
144 |
+
"No congestion but Down cell",
|
145 |
+
"Congestion but Colocated Down Cell",
|
146 |
+
]
|
147 |
+
|
148 |
+
lte_analysis_logic_df["congestion_comment"] = np.select(
|
149 |
+
conditions, choices, default="Need Action"
|
150 |
+
)
|
151 |
+
|
152 |
+
# Add "Actions" column
|
153 |
+
# if load_balance_required = "Yes" and congestion_comment = "Need Action" then "Load Balancing parameter tuning required"
|
154 |
+
# if load_balance_required = "Yes" and congestion_comment = "Need Action" then "Add Layer"
|
155 |
+
# Else keep congestion_comment
|
156 |
+
conditions = [
|
157 |
+
(lte_analysis_logic_df["load_balance_required"] == "Yes")
|
158 |
+
& (lte_analysis_logic_df["congestion_comment"] == "Need Action"),
|
159 |
+
(lte_analysis_logic_df["load_balance_required"] == "No")
|
160 |
+
& (lte_analysis_logic_df["congestion_comment"] == "Need Action"),
|
161 |
+
]
|
162 |
+
|
163 |
+
choices = [
|
164 |
+
"Load Balancing parameter tuning required",
|
165 |
+
"Add Layer",
|
166 |
+
]
|
167 |
+
|
168 |
+
lte_analysis_logic_df["actions"] = np.select(
|
169 |
+
conditions, choices, default=lte_analysis_logic_df["congestion_comment"]
|
170 |
+
)
|
171 |
+
|
172 |
+
# Add Final Comments
|
173 |
+
# if "actions" = "Add Layer" then "'Add' + 'next_band''
|
174 |
+
# Else keep "actions" as it is
|
175 |
+
lte_analysis_logic_df["final_comments"] = lte_analysis_logic_df.apply(
|
176 |
+
lambda row: (
|
177 |
+
f"Add {row['next_band']}"
|
178 |
+
if row["actions"] == "Add Layer"
|
179 |
+
else row["actions"]
|
180 |
+
),
|
181 |
+
axis=1,
|
182 |
+
)
|
183 |
+
|
184 |
+
# create column "sector" equal to conteent of "LNCEL_name_l800" if not empty else "LNCEL_name_l1800" if not empty else "LNCEL_name_l2300"
|
185 |
+
lte_analysis_logic_df["sector"] = (
|
186 |
+
lte_analysis_logic_df["LNCEL_name_l800"]
|
187 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l1800"])
|
188 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l2300"])
|
189 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l2600"])
|
190 |
+
.combine_first(lte_analysis_logic_df["LNCEL_name_l1800s"])
|
191 |
+
)
|
192 |
+
# remove rows where sector is empty
|
193 |
+
lte_analysis_logic_df = lte_analysis_logic_df[
|
194 |
+
lte_analysis_logic_df["sector"].notna()
|
195 |
+
]
|
196 |
+
# Add sector_id column if sector contains : '_1_" then 1 elif sector contains : '_2_" then 2 elif sector contains : '_3_" then 3
|
197 |
+
lte_analysis_logic_df["sector_id"] = np.where(
|
198 |
+
lte_analysis_logic_df["sector"].str.contains("_1_"),
|
199 |
+
1,
|
200 |
+
np.where(
|
201 |
+
lte_analysis_logic_df["sector"].str.contains("_2_"),
|
202 |
+
2,
|
203 |
+
np.where(lte_analysis_logic_df["sector"].str.contains("_3_"), 3, np.nan),
|
204 |
+
),
|
205 |
+
)
|
206 |
+
# add code_sector column by combine code and sector_id
|
207 |
+
lte_analysis_logic_df["code_sector"] = (
|
208 |
+
lte_analysis_logic_df["code"].astype(str)
|
209 |
+
+ "_"
|
210 |
+
+ lte_analysis_logic_df["sector_id"].astype(str)
|
211 |
+
)
|
212 |
+
|
213 |
+
# remove '.0' from code_sector
|
214 |
+
lte_analysis_logic_df["code_sector"] = lte_analysis_logic_df[
|
215 |
+
"code_sector"
|
216 |
+
].str.replace(".0", "")
|
217 |
+
|
218 |
+
# lte_analysis_logic_df = lte_analysis_logic_df[LTE_ANALYSIS_COLUMNS]
|
219 |
+
return lte_analysis_logic_df
|
220 |
+
|
221 |
+
|
222 |
+
def dfs_per_band_cell(df: pd.DataFrame) -> pd.DataFrame:
|
223 |
+
# Base DataFrame with unique codes, Region, and site_config_band
|
224 |
+
all_codes_df = df[["code", "Region", "site_config_band"]].drop_duplicates()
|
225 |
+
|
226 |
+
# Configuration for sector groups and their respective LNCEL patterns and column suffixes
|
227 |
+
# Format: { "group_key": [(lncel_name_pattern_part, column_suffix), ...] }
|
228 |
+
# lncel_name_pattern_part will be combined with "_<group_key>" or similar
|
229 |
+
# Example: for group "1", pattern "_1_L800" gives suffix "l800"
|
230 |
+
sector_groups_config = {
|
231 |
+
"1": [
|
232 |
+
("_1_L800", "l800"),
|
233 |
+
("_1_L1800", "l1800"),
|
234 |
+
("_1_L2300", "l2300"),
|
235 |
+
("_1_L2600", "l2600"),
|
236 |
+
("_1S_L1800", "l1800s"),
|
237 |
+
],
|
238 |
+
"2": [
|
239 |
+
("_2_L800", "l800"),
|
240 |
+
("_2_L1800", "l1800"),
|
241 |
+
("_2_L2300", "l2300"),
|
242 |
+
("_2_L2600", "l2600"),
|
243 |
+
("_2S_L1800", "l1800s"),
|
244 |
+
],
|
245 |
+
"3": [
|
246 |
+
("_3_L800", "l800"),
|
247 |
+
("_3_L1800", "l1800"),
|
248 |
+
("_3_L2300", "l2300"),
|
249 |
+
("_3_L2600", "l2600"),
|
250 |
+
("_3S_L1800", "l1800s"),
|
251 |
+
],
|
252 |
+
}
|
253 |
+
|
254 |
+
all_processed_sectors_dfs = []
|
255 |
+
|
256 |
+
for sector_group_key, band_configurations in sector_groups_config.items():
|
257 |
+
# Start with the base DataFrame for the current sector group
|
258 |
+
current_sector_group_df = all_codes_df.copy()
|
259 |
+
|
260 |
+
for lncel_name_pattern, column_suffix in band_configurations:
|
261 |
+
# Filter the original DataFrame for the current LNCEL pattern
|
262 |
+
# The pattern assumes LNCEL_name contains something like "SITENAME<lncel_name_pattern>"
|
263 |
+
filtered_band_df = df[df["LNCEL_name"].str.contains(lncel_name_pattern)]
|
264 |
+
|
265 |
+
# Select relevant columns and rename them for the merge
|
266 |
+
# This avoids pandas automatically adding _x, _y suffixes and then needing to rename them
|
267 |
+
df_to_merge = filtered_band_df[
|
268 |
+
["code", "LNCEL_name", "avg_prb_usage_bh"]
|
269 |
+
].rename(
|
270 |
+
columns={
|
271 |
+
"LNCEL_name": f"LNCEL_name_{column_suffix}",
|
272 |
+
"avg_prb_usage_bh": f"avg_prb_usage_bh_{column_suffix}",
|
273 |
+
}
|
274 |
+
)
|
275 |
+
|
276 |
+
# Perform a left merge
|
277 |
+
current_sector_group_df = pd.merge(
|
278 |
+
current_sector_group_df, df_to_merge, on="code", how="left"
|
279 |
+
)
|
280 |
+
|
281 |
+
all_processed_sectors_dfs.append(current_sector_group_df)
|
282 |
+
|
283 |
+
# Concatenate all the processed sector DataFrames
|
284 |
+
all_sectors_dfs = pd.concat(all_processed_sectors_dfs, axis=0, ignore_index=True)
|
285 |
+
|
286 |
+
return all_sectors_dfs
|
287 |
+
|
288 |
+
|
289 |
+
def lte_database_for_capacity(dump_path: str):
|
290 |
+
dfs = process_lte_data(dump_path)
|
291 |
+
lte_fdd = dfs[0]
|
292 |
+
lte_tdd = dfs[1]
|
293 |
+
|
294 |
+
lte_fdd = lte_fdd[LTE_DATABASE_COLUMNS]
|
295 |
+
lte_tdd = lte_tdd[LTE_DATABASE_COLUMNS]
|
296 |
+
|
297 |
+
lte_db = pd.concat([lte_fdd, lte_tdd], axis=0)
|
298 |
+
|
299 |
+
# rename final_name to LNCEL_name
|
300 |
+
lte_db = lte_db.rename(columns={"final_name": "LNCEL_name"})
|
301 |
+
|
302 |
+
# save_dataframe(lte_db, "LTE_Database.csv")
|
303 |
+
return lte_db
|
304 |
+
|
305 |
+
|
306 |
+
def lte_bh_dfs_per_kpi(
|
307 |
+
dump_path: str,
|
308 |
+
df: pd.DataFrame,
|
309 |
+
number_of_kpi_days: int = 7,
|
310 |
+
availability_threshold: int = 95,
|
311 |
+
prb_usage_threshold: int = 80,
|
312 |
+
prb_diff_between_cells_threshold: int = 20,
|
313 |
+
number_of_threshold_days: int = 3,
|
314 |
+
) -> pd.DataFrame:
|
315 |
+
|
316 |
+
# print(df.columns)
|
317 |
+
|
318 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
319 |
+
df=df,
|
320 |
+
pivot_date_column="date",
|
321 |
+
pivot_name_column="LNCEL_name",
|
322 |
+
kpi_columns_from=2,
|
323 |
+
)
|
324 |
+
cell_availability_df = cell_availability_analysis(
|
325 |
+
df=pivoted_kpi_dfs["Cell_Avail_excl_BLU"],
|
326 |
+
days=number_of_kpi_days,
|
327 |
+
availability_threshold=availability_threshold,
|
328 |
+
)
|
329 |
+
# prb_usage_df = analyze_prb_usage(
|
330 |
+
# df=pivoted_kpi_dfs["E_UTRAN_Avg_PRB_usage_per_TTI_DL"],
|
331 |
+
# number_of_kpi_days=number_of_kpi_days,
|
332 |
+
# prb_usage_threshold=prb_usage_threshold,
|
333 |
+
# analysis_type="BH",
|
334 |
+
# number_of_threshold_days=number_of_threshold_days,
|
335 |
+
# )
|
336 |
+
prb_lev10_usage_df = analyze_prb_usage(
|
337 |
+
df=pivoted_kpi_dfs["DL_PRB_Util_p_TTI_Lev_10"],
|
338 |
+
number_of_kpi_days=number_of_kpi_days,
|
339 |
+
prb_usage_threshold=prb_usage_threshold,
|
340 |
+
analysis_type="BH",
|
341 |
+
number_of_threshold_days=number_of_threshold_days,
|
342 |
+
)
|
343 |
+
|
344 |
+
bh_kpi_df = pd.concat([cell_availability_df, prb_lev10_usage_df], axis=1)
|
345 |
+
bh_kpi_df = bh_kpi_df.reset_index()
|
346 |
+
prb_df = bh_kpi_df[PRB_COLUMNS]
|
347 |
+
|
348 |
+
# drop row if lnCEL_name is empty or 1
|
349 |
+
prb_df = prb_df[prb_df["LNCEL_name"].str.len() > 3]
|
350 |
+
# prb_df = prb_df.reset_index()
|
351 |
+
prb_df = prb_df.droplevel(level=1, axis=1) # Drop the first level (date)
|
352 |
+
# prb_df = prb_df.reset_index()
|
353 |
+
# prb_df["code"] = prb_df["LNCEL_name"].str.split("_").str[0]
|
354 |
+
|
355 |
+
lte_db = lte_database_for_capacity(dump_path)
|
356 |
+
|
357 |
+
db_and_prb = pd.merge(lte_db, prb_df, on="LNCEL_name", how="left")
|
358 |
+
|
359 |
+
# if avg_prb_usage_bh is "" then set it to "cell exists in dump but not in BH report"
|
360 |
+
# db_and_prb.loc[db_and_prb["avg_prb_usage_bh"].isnull(), "avg_prb_usage_bh"] = (
|
361 |
+
# "cell exists in dump but not in BH report"
|
362 |
+
# )
|
363 |
+
# drop row if lnCEL_name is empty or 1
|
364 |
+
db_and_prb = db_and_prb[db_and_prb["LNCEL_name"].str.len() > 3]
|
365 |
+
|
366 |
+
lte_analysis_df = dfs_per_band_cell(db_and_prb)
|
367 |
+
lte_analysis_df = lte_analysis_logic(
|
368 |
+
lte_analysis_df,
|
369 |
+
prb_usage_threshold,
|
370 |
+
prb_diff_between_cells_threshold,
|
371 |
+
)
|
372 |
+
lte_analysis_df = lte_analysis_df[LTE_ANALYSIS_COLUMNS]
|
373 |
+
|
374 |
+
return [bh_kpi_df, lte_analysis_df]
|
375 |
+
|
376 |
+
|
377 |
+
def process_lte_bh_report(
|
378 |
+
dump_path: str,
|
379 |
+
bh_report_path: str,
|
380 |
+
num_last_days: int,
|
381 |
+
num_threshold_days: int,
|
382 |
+
availability_threshold: float,
|
383 |
+
prb_usage_threshold: float,
|
384 |
+
prb_diff_between_cells_threshold: float,
|
385 |
+
) -> dict:
|
386 |
+
"""
|
387 |
+
Process LTE Busy Hour report and perform capacity analysis
|
388 |
+
|
389 |
+
Args:
|
390 |
+
bh_report_path: Path to BH report CSV file
|
391 |
+
num_last_days: Number of last days for analysis
|
392 |
+
num_threshold_days: Number of days for threshold calculation
|
393 |
+
availability_threshold: Minimum required availability
|
394 |
+
prb_usage_threshold: Maximum allowed PRB usage
|
395 |
+
prb_diff_between_cells_threshold: Maximum allowed PRB usage difference between cells
|
396 |
+
|
397 |
+
Returns:
|
398 |
+
Dictionary containing analysis results and DataFrames
|
399 |
+
"""
|
400 |
+
LteCapacity.final_results = None
|
401 |
+
# lte_db_dfs = lte_database_for_capacity(dump_path)
|
402 |
+
|
403 |
+
# Read BH report
|
404 |
+
df = pd.read_csv(bh_report_path, delimiter=";")
|
405 |
+
df = kpi_naming_cleaning(df)
|
406 |
+
# print(df.columns)
|
407 |
+
df = create_hourly_date(df)
|
408 |
+
df = df[KPI_COLUMNS]
|
409 |
+
pivoted_kpi_dfs = lte_bh_dfs_per_kpi(
|
410 |
+
dump_path=dump_path,
|
411 |
+
df=df,
|
412 |
+
number_of_kpi_days=num_last_days,
|
413 |
+
availability_threshold=availability_threshold,
|
414 |
+
prb_usage_threshold=prb_usage_threshold,
|
415 |
+
prb_diff_between_cells_threshold=prb_diff_between_cells_threshold,
|
416 |
+
number_of_threshold_days=num_threshold_days,
|
417 |
+
)
|
418 |
+
|
419 |
+
# save_dataframe(pivoted_kpi_dfs, "LTE_BH_Report.csv")
|
420 |
+
return pivoted_kpi_dfs
|
utils/convert_to_excel.py
CHANGED
@@ -143,14 +143,31 @@ def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
|
|
143 |
"number_trx_per_bcf": formats["blue_light"],
|
144 |
"number_trx_per_site": formats["blue_light"],
|
145 |
}
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
else:
|
155 |
return {} # No formatting if format_type not matched
|
156 |
|
@@ -193,6 +210,11 @@ def convert_gsm_dfs(dfs, sheet_names) -> bytes:
|
|
193 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="GSM_Analysis")
|
194 |
|
195 |
|
|
|
|
|
|
|
|
|
|
|
196 |
@st.cache_data
|
197 |
def convert_database_dfs(dfs, sheet_names) -> bytes:
|
198 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="database")
|
|
|
143 |
"number_trx_per_bcf": formats["blue_light"],
|
144 |
"number_trx_per_site": formats["blue_light"],
|
145 |
}
|
146 |
+
elif format_type == "LTE_Analysis":
|
147 |
+
return {
|
148 |
+
"code": formats["blue"],
|
149 |
+
"code_sector": formats["blue"],
|
150 |
+
"Region": formats["blue"],
|
151 |
+
"site_config_band": formats["blue"],
|
152 |
+
"LNCEL_name_l800": formats["beurre"],
|
153 |
+
"LNCEL_name_l1800": formats["purple5"],
|
154 |
+
"LNCEL_name_l2300": formats["purple6"],
|
155 |
+
"LNCEL_name_l2600": formats["blue_light"],
|
156 |
+
"LNCEL_name_l1800s": formats["gray"],
|
157 |
+
"avg_prb_usage_bh_l800": formats["beurre"],
|
158 |
+
"avg_prb_usage_bh_l1800": formats["purple5"],
|
159 |
+
"avg_prb_usage_bh_l2300": formats["purple6"],
|
160 |
+
"avg_prb_usage_bh_l2600": formats["blue_light"],
|
161 |
+
"avg_prb_usage_bh_l1800s": formats["gray"],
|
162 |
+
"num_congested_cells": formats["orange"],
|
163 |
+
"num_cells": formats["orange"],
|
164 |
+
"num_cell_with_kpi": formats["orange"],
|
165 |
+
"num_down_or_no_kpi_cells": formats["orange"],
|
166 |
+
"prb_diff_between_cells": formats["orange"],
|
167 |
+
"load_balance_required": formats["orange"],
|
168 |
+
"congestion_comment": formats["orange"],
|
169 |
+
"final_comments": formats["green"],
|
170 |
+
}
|
171 |
else:
|
172 |
return {} # No formatting if format_type not matched
|
173 |
|
|
|
210 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="GSM_Analysis")
|
211 |
|
212 |
|
213 |
+
@st.cache_data
|
214 |
+
def convert_lte_analysis_dfs(dfs, sheet_names) -> bytes:
|
215 |
+
return _write_to_excel(dfs, sheet_names, index=True, format_type="LTE_Analysis")
|
216 |
+
|
217 |
+
|
218 |
@st.cache_data
|
219 |
def convert_database_dfs(dfs, sheet_names) -> bytes:
|
220 |
return _write_to_excel(dfs, sheet_names, index=True, format_type="database")
|
utils/kpi_analysis_utils.py
CHANGED
@@ -538,3 +538,50 @@ def analyze_sdcch_call_blocking(
|
|
538 |
)
|
539 |
|
540 |
return result_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
)
|
539 |
|
540 |
return result_df
|
541 |
+
|
542 |
+
|
543 |
+
class LteCapacity:
|
544 |
+
final_results = None
|
545 |
+
# Next band mapping
|
546 |
+
next_band_mapping = {
|
547 |
+
"L1800": "L800",
|
548 |
+
"L800": "L1800",
|
549 |
+
"L1800/L800": "L2600",
|
550 |
+
"L1800/L2300/L800": "L2600",
|
551 |
+
"L2300/L800": "L2600",
|
552 |
+
"L1800/L2600/L800": "New site/Dual Beam",
|
553 |
+
"L1800/L2300/L2600/L800": "New site/Dual Beam",
|
554 |
+
"L2300": "FDD H// colocated site",
|
555 |
+
}
|
556 |
+
|
557 |
+
|
558 |
+
def analyze_prb_usage(
|
559 |
+
df: pd.DataFrame,
|
560 |
+
number_of_kpi_days: int,
|
561 |
+
prb_usage_threshold: int,
|
562 |
+
analysis_type: str,
|
563 |
+
number_of_threshold_days: int,
|
564 |
+
) -> pd.DataFrame:
|
565 |
+
result_df = df.copy()
|
566 |
+
last_days_df: pd.DataFrame = result_df.iloc[:, -number_of_kpi_days:]
|
567 |
+
# last_days_df = last_days_df.fillna(0)
|
568 |
+
|
569 |
+
result_df[f"avg_prb_usage_{analysis_type.lower()}"] = last_days_df.mean(
|
570 |
+
axis=1
|
571 |
+
).round(2)
|
572 |
+
result_df[f"max_prb_usage_{analysis_type.lower()}"] = last_days_df.max(axis=1)
|
573 |
+
# Count the number of days above threshold
|
574 |
+
result_df[f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}"] = (
|
575 |
+
last_days_df.apply(
|
576 |
+
lambda row: sum(1 for x in row if x >= prb_usage_threshold), axis=1
|
577 |
+
)
|
578 |
+
)
|
579 |
+
|
580 |
+
# Add the daily_prb_comment : if number_of_days_with_prb_usage_exceeded_daily is >= number_of_threshold_days : prb usage exceeded threshold , else : None
|
581 |
+
result_df[f"prb_usage_{analysis_type.lower()}_comment"] = np.where(
|
582 |
+
result_df[f"number_of_days_with_prb_usage_exceeded_{analysis_type.lower()}"]
|
583 |
+
>= number_of_threshold_days,
|
584 |
+
"PRB usage exceeded threshold",
|
585 |
+
None,
|
586 |
+
)
|
587 |
+
return result_df
|