Wcel capacity V1 completed
Browse files
apps/kpi_analysis/wcel_capacity.py
CHANGED
@@ -89,10 +89,12 @@ if uploaded_file is not None:
|
|
89 |
)
|
90 |
|
91 |
if results is not None:
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
st.download_button(
|
97 |
on_click="ignore",
|
98 |
type="primary",
|
@@ -101,4 +103,217 @@ if uploaded_file is not None:
|
|
101 |
file_name="WCEL_Capacity_Report.xlsx",
|
102 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
103 |
)
|
104 |
-
st.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
if results is not None:
|
92 |
+
wcel_analysis_df = results[0]
|
93 |
+
kpi_df = results[1]
|
94 |
|
95 |
+
WcelCapacity.final_results = convert_dfs(
|
96 |
+
[wcel_analysis_df, kpi_df], ["wcel_analysis", "kpi"]
|
97 |
+
)
|
98 |
st.download_button(
|
99 |
on_click="ignore",
|
100 |
type="primary",
|
|
|
103 |
file_name="WCEL_Capacity_Report.xlsx",
|
104 |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
105 |
)
|
106 |
+
st.write(wcel_analysis_df)
|
107 |
+
# Add dataframe and Bar chart with "final_comments" distribution
|
108 |
+
st.markdown("***")
|
109 |
+
st.markdown(":blue[**Final comment distribution**]")
|
110 |
+
final_comments_df = (
|
111 |
+
wcel_analysis_df.groupby("final_comments")
|
112 |
+
.size()
|
113 |
+
.reset_index(name="count")
|
114 |
+
.sort_values(by="count", ascending=False)
|
115 |
+
)
|
116 |
+
final_comments_col1, final_comments_col2 = st.columns((1, 3))
|
117 |
+
with final_comments_col1:
|
118 |
+
st.write(final_comments_df)
|
119 |
+
with final_comments_col2:
|
120 |
+
fig = px.bar(
|
121 |
+
final_comments_df,
|
122 |
+
x="final_comments",
|
123 |
+
y="count",
|
124 |
+
title="Final Comments Distribution",
|
125 |
+
text="count",
|
126 |
+
)
|
127 |
+
fig.update_traces(textposition="outside")
|
128 |
+
fig.update_layout(height=600)
|
129 |
+
st.plotly_chart(fig)
|
130 |
+
|
131 |
+
# Add dataframe and Pie chart with "operational_comments" distribution
|
132 |
+
st.markdown("***")
|
133 |
+
st.markdown(":blue[**Operational comment distribution**]")
|
134 |
+
operational_comments_df = (
|
135 |
+
wcel_analysis_df.groupby("operational_comments")
|
136 |
+
.size()
|
137 |
+
.reset_index(name="count")
|
138 |
+
.sort_values(by="count", ascending=False)
|
139 |
+
)
|
140 |
+
operational_comments_df["percent"] = (
|
141 |
+
operational_comments_df["count"] / operational_comments_df["count"].sum()
|
142 |
+
) * 100
|
143 |
+
operational_comments_col1, operational_comments_col2 = st.columns((1, 3))
|
144 |
+
with operational_comments_col1:
|
145 |
+
st.write(operational_comments_df)
|
146 |
+
with operational_comments_col2:
|
147 |
+
fig = px.pie(
|
148 |
+
operational_comments_df,
|
149 |
+
names="operational_comments",
|
150 |
+
values="count",
|
151 |
+
hover_name="operational_comments",
|
152 |
+
hover_data=["count", "percent"],
|
153 |
+
title="Operational Comments Distribution",
|
154 |
+
)
|
155 |
+
fig.update_layout(height=600)
|
156 |
+
fig.update_traces(
|
157 |
+
texttemplate="<b>%{label}</b><br> %{value} <b>(%{customdata[1]:.1f}%)</b>",
|
158 |
+
textfont_size=15,
|
159 |
+
textposition="outside",
|
160 |
+
)
|
161 |
+
st.plotly_chart(fig)
|
162 |
+
|
163 |
+
# Add dataframe and Bar chart with "operational_comments" distribution per Region
|
164 |
+
st.markdown("***")
|
165 |
+
st.markdown(":blue[**Operational comment distribution per Region**]")
|
166 |
+
operational_comments_df = (
|
167 |
+
wcel_analysis_df.groupby(["Region", "operational_comments"])
|
168 |
+
.size()
|
169 |
+
.reset_index(name="count")
|
170 |
+
.sort_values(by="count", ascending=False)
|
171 |
+
)
|
172 |
+
operational_comments_col1, operational_comments_col2 = st.columns((1, 3))
|
173 |
+
with operational_comments_col1:
|
174 |
+
st.write(operational_comments_df)
|
175 |
+
with operational_comments_col2:
|
176 |
+
fig = px.bar(
|
177 |
+
operational_comments_df,
|
178 |
+
x="Region",
|
179 |
+
y="count",
|
180 |
+
color="operational_comments",
|
181 |
+
title="Operational Comments Distribution per Region",
|
182 |
+
text="count",
|
183 |
+
)
|
184 |
+
fig.update_traces(textposition="outside")
|
185 |
+
fig.update_layout(height=600)
|
186 |
+
st.plotly_chart(fig)
|
187 |
+
|
188 |
+
# Add dataframe and Pie chart with "fails_comments" distribution
|
189 |
+
st.markdown("***")
|
190 |
+
st.markdown(":blue[**Fails comment distribution**]")
|
191 |
+
fails_comments_df = (
|
192 |
+
wcel_analysis_df.groupby("fails_comments")
|
193 |
+
.size()
|
194 |
+
.reset_index(name="count")
|
195 |
+
.sort_values(by="count", ascending=False)
|
196 |
+
)
|
197 |
+
|
198 |
+
# replace empty strings with "Cell OK"
|
199 |
+
fails_comments_df["fails_comments"] = fails_comments_df[
|
200 |
+
"fails_comments"
|
201 |
+
].replace("", "Cell OK")
|
202 |
+
|
203 |
+
fails_comments_df["percent"] = (
|
204 |
+
fails_comments_df["count"] / fails_comments_df["count"].sum()
|
205 |
+
) * 100
|
206 |
+
fails_comments_col1, fails_comments_col2 = st.columns((1, 3))
|
207 |
+
with fails_comments_col1:
|
208 |
+
st.write(fails_comments_df)
|
209 |
+
with fails_comments_col2:
|
210 |
+
fig = px.pie(
|
211 |
+
fails_comments_df,
|
212 |
+
names="fails_comments",
|
213 |
+
values="count",
|
214 |
+
hover_name="fails_comments",
|
215 |
+
hover_data=["count", "percent"],
|
216 |
+
title="Fails Comments Distribution",
|
217 |
+
)
|
218 |
+
fig.update_layout(height=600)
|
219 |
+
fig.update_traces(
|
220 |
+
texttemplate="<b>%{label}</b><br> %{value} <b>(%{customdata[1]:.1f}%)</b>",
|
221 |
+
textfont_size=15,
|
222 |
+
textposition="outside",
|
223 |
+
)
|
224 |
+
st.plotly_chart(fig)
|
225 |
+
|
226 |
+
# Add dataframe and Bar chart with "fails_comments" distribution per Region
|
227 |
+
st.markdown("***")
|
228 |
+
st.markdown(":blue[**Fails comment distribution per Region**]")
|
229 |
+
fails_comments_df = (
|
230 |
+
wcel_analysis_df.groupby(["Region", "fails_comments"])
|
231 |
+
.size()
|
232 |
+
.reset_index(name="count")
|
233 |
+
.sort_values(by="count", ascending=False)
|
234 |
+
)
|
235 |
+
|
236 |
+
# replace empty strings with "Cell OK"
|
237 |
+
fails_comments_df["fails_comments"] = fails_comments_df[
|
238 |
+
"fails_comments"
|
239 |
+
].replace("", "Cell OK")
|
240 |
+
|
241 |
+
fails_comments_col1, fails_comments_col2 = st.columns((1, 3))
|
242 |
+
with fails_comments_col1:
|
243 |
+
st.write(fails_comments_df)
|
244 |
+
with fails_comments_col2:
|
245 |
+
fig = px.bar(
|
246 |
+
fails_comments_df,
|
247 |
+
x="Region",
|
248 |
+
y="count",
|
249 |
+
color="fails_comments",
|
250 |
+
title="Fails Comments Distribution per Region",
|
251 |
+
text="count",
|
252 |
+
)
|
253 |
+
fig.update_traces(textposition="outside", textfont_size=15)
|
254 |
+
fig.update_layout(height=600)
|
255 |
+
st.plotly_chart(fig)
|
256 |
+
|
257 |
+
# create a map plot with scatter_map with code ,Longitude,Latitude,fails_comments
|
258 |
+
st.markdown("***")
|
259 |
+
st.markdown(":blue[**Fails comments distribution**]")
|
260 |
+
fails_comments_map_df = wcel_analysis_df[
|
261 |
+
["code", "Longitude", "Latitude", "fails_comments"]
|
262 |
+
].dropna(subset=["code", "Longitude", "Latitude", "fails_comments"])
|
263 |
+
|
264 |
+
# replace empty strings with "Cell OK"
|
265 |
+
fails_comments_map_df["fails_comments"] = fails_comments_map_df[
|
266 |
+
"fails_comments"
|
267 |
+
].replace("", "Cell OK")
|
268 |
+
|
269 |
+
# add size column equalt to 20
|
270 |
+
fails_comments_map_df["size"] = 20
|
271 |
+
|
272 |
+
fig = px.scatter_map(
|
273 |
+
fails_comments_map_df,
|
274 |
+
lat="Latitude",
|
275 |
+
lon="Longitude",
|
276 |
+
color="fails_comments",
|
277 |
+
size="size",
|
278 |
+
zoom=10,
|
279 |
+
height=600,
|
280 |
+
title="Fails comments distribution",
|
281 |
+
hover_data={
|
282 |
+
"code": True,
|
283 |
+
"fails_comments": True,
|
284 |
+
},
|
285 |
+
hover_name="code",
|
286 |
+
)
|
287 |
+
fig.update_layout(mapbox_style="open-street-map")
|
288 |
+
st.plotly_chart(fig, use_container_width=True)
|
289 |
+
|
290 |
+
# create a map plot with scatter_map with code ,Longitude,Latitude,operational_comments
|
291 |
+
operational_comments_map_df = wcel_analysis_df[
|
292 |
+
["code", "Longitude", "Latitude", "operational_comments"]
|
293 |
+
].dropna(subset=["code", "Longitude", "Latitude", "operational_comments"])
|
294 |
+
|
295 |
+
# replace empty strings with "Cell OK"
|
296 |
+
operational_comments_map_df["operational_comments"] = (
|
297 |
+
operational_comments_map_df["operational_comments"].replace("", "Cell OK")
|
298 |
+
)
|
299 |
+
|
300 |
+
# add size column equalt to 20
|
301 |
+
operational_comments_map_df["size"] = 20
|
302 |
+
|
303 |
+
fig = px.scatter_map(
|
304 |
+
operational_comments_map_df,
|
305 |
+
lat="Latitude",
|
306 |
+
lon="Longitude",
|
307 |
+
color="operational_comments",
|
308 |
+
size="size",
|
309 |
+
zoom=10,
|
310 |
+
height=600,
|
311 |
+
title="Operational comments distribution",
|
312 |
+
hover_data={
|
313 |
+
"code": True,
|
314 |
+
"operational_comments": True,
|
315 |
+
},
|
316 |
+
hover_name="code",
|
317 |
+
)
|
318 |
+
fig.update_layout(mapbox_style="open-street-map")
|
319 |
+
st.plotly_chart(fig, use_container_width=True)
|
process_kpi/process_wcel_capacity.py
CHANGED
@@ -9,6 +9,7 @@ from utils.kpi_analysis_utils import (
|
|
9 |
kpi_naming_cleaning,
|
10 |
summarize_fails_comments,
|
11 |
)
|
|
|
12 |
|
13 |
tx_comments_mapping = {
|
14 |
"iub_frameloss exceeded threshold": "iub frameloss",
|
@@ -31,6 +32,20 @@ operational_comments_mapping = {
|
|
31 |
"hsdpa iub congestion, critical instability": "Availability and TX issues",
|
32 |
}
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
KPI_COLUMNS = [
|
35 |
"WCEL_name",
|
36 |
"date",
|
@@ -48,6 +63,36 @@ KPI_COLUMNS = [
|
|
48 |
"rrc_conn_stp_fail_bts_M1001C4",
|
49 |
]
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
class WcelCapacity:
|
53 |
final_results: pd.DataFrame = None
|
@@ -80,13 +125,11 @@ def wcel_kpi_analysis(
|
|
80 |
hsdpa_user_throughput_df = pivoted_kpi_dfs["HSDPA_USER_THROUGHPUT"]
|
81 |
max_simult_hsdpa_users_df = pivoted_kpi_dfs["Max_simult_HSDPA_users"]
|
82 |
# Add Max of Trafics, throughput and max users
|
83 |
-
trafic_cs_df["
|
84 |
-
hsdpa_traffic_df["
|
85 |
hsdpa_user_throughput_df["max_dl_throughput"] = hsdpa_user_throughput_df.max(axis=1)
|
86 |
max_simult_hsdpa_users_df["max_users"] = max_simult_hsdpa_users_df.max(axis=1)
|
87 |
# add average of Trafics, throughput and max users
|
88 |
-
trafic_cs_df["avg_traffic_cs"] = trafic_cs_df.mean(axis=1)
|
89 |
-
hsdpa_traffic_df["avg_traffic_dl"] = hsdpa_traffic_df.mean(axis=1)
|
90 |
hsdpa_user_throughput_df["avg_dl_throughput"] = hsdpa_user_throughput_df.mean(
|
91 |
axis=1
|
92 |
)
|
@@ -196,7 +239,72 @@ def wcel_kpi_analysis(
|
|
196 |
new_column="fails_comments",
|
197 |
)
|
198 |
kpi_df["fails_comments"] = kpi_df["fails_comments"].apply(summarize_fails_comments)
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
|
202 |
def load_and_process_wcel_capacity_data(
|
@@ -228,7 +336,7 @@ def load_and_process_wcel_capacity_data(
|
|
228 |
df = kpi_naming_cleaning(df)
|
229 |
df = create_daily_date(df)
|
230 |
df = df[KPI_COLUMNS]
|
231 |
-
|
232 |
df,
|
233 |
num_last_days,
|
234 |
num_threshold_days,
|
@@ -237,4 +345,4 @@ def load_and_process_wcel_capacity_data(
|
|
237 |
hsdpa_congestion_rate_iub_threshold,
|
238 |
fails_treshold,
|
239 |
)
|
240 |
-
return
|
|
|
9 |
kpi_naming_cleaning,
|
10 |
summarize_fails_comments,
|
11 |
)
|
12 |
+
from utils.utils_vars import get_physical_db
|
13 |
|
14 |
tx_comments_mapping = {
|
15 |
"iub_frameloss exceeded threshold": "iub frameloss",
|
|
|
32 |
"hsdpa iub congestion, critical instability": "Availability and TX issues",
|
33 |
}
|
34 |
|
35 |
+
fails_comments_mapping = {
|
36 |
+
"ac, ac_dl, bts, code fails": "Power, Bts and Code fails",
|
37 |
+
"bts fails": "Bts fails",
|
38 |
+
"ac, bts, code fails": "Power and Code fails",
|
39 |
+
"ac, code fails": "Power fails",
|
40 |
+
"ac fails": "Power fails",
|
41 |
+
"ac, ac_dl fails": "Power fails",
|
42 |
+
"ac, bts fails": "Power and Bts fails",
|
43 |
+
"ac, ac_dl, bts fails": "Power and Bts fails",
|
44 |
+
"ac, ac_dl, code fails": "Power and Code fails",
|
45 |
+
"ac, ac_ul, bts, code fails": "Power, Bts and Code fails",
|
46 |
+
"ac, ac_dl, ac_ul, bts, code fails": "Power, Bts and Code fails",
|
47 |
+
}
|
48 |
+
|
49 |
KPI_COLUMNS = [
|
50 |
"WCEL_name",
|
51 |
"date",
|
|
|
63 |
"rrc_conn_stp_fail_bts_M1001C4",
|
64 |
]
|
65 |
|
66 |
+
WCEL_ANALYSIS_COLUMNS = [
|
67 |
+
"WCEL_name",
|
68 |
+
"Average_cell_availability_daily",
|
69 |
+
"number_of_days_exceeding_availability_threshold_daily",
|
70 |
+
"availability_comment_daily",
|
71 |
+
"sum_traffic_cs",
|
72 |
+
"sum_traffic_dl",
|
73 |
+
"max_dl_throughput",
|
74 |
+
"avg_dl_throughput",
|
75 |
+
"max_users",
|
76 |
+
"max_iub_frameloss",
|
77 |
+
"number_of_days_with_iub_frameloss_exceeded",
|
78 |
+
"max_hsdpa_congestion_rate_iub",
|
79 |
+
"number_of_days_with_hsdpa_congestion_rate_iub_exceeded",
|
80 |
+
"max_rrc_fail_ac",
|
81 |
+
"number_of_days_with_rrc_fail_ac_exceeded",
|
82 |
+
"max_rrc_fail_ac_ul",
|
83 |
+
"number_of_days_with_rrc_fail_ac_ul_exceeded",
|
84 |
+
"max_rrc_fail_ac_dl",
|
85 |
+
"number_of_days_with_rrc_fail_ac_dl_exceeded",
|
86 |
+
"max_rrc_fail_code",
|
87 |
+
"number_of_days_with_rrc_fail_code_exceeded",
|
88 |
+
"max_rrc_fail_bts",
|
89 |
+
"number_of_days_with_rrc_fail_bts_exceeded",
|
90 |
+
"tx_congestion_comments",
|
91 |
+
"operational_comments",
|
92 |
+
"fails_comments",
|
93 |
+
"final_comments",
|
94 |
+
]
|
95 |
+
|
96 |
|
97 |
class WcelCapacity:
|
98 |
final_results: pd.DataFrame = None
|
|
|
125 |
hsdpa_user_throughput_df = pivoted_kpi_dfs["HSDPA_USER_THROUGHPUT"]
|
126 |
max_simult_hsdpa_users_df = pivoted_kpi_dfs["Max_simult_HSDPA_users"]
|
127 |
# Add Max of Trafics, throughput and max users
|
128 |
+
trafic_cs_df["sum_traffic_cs"] = trafic_cs_df.sum(axis=1)
|
129 |
+
hsdpa_traffic_df["sum_traffic_dl"] = hsdpa_traffic_df.sum(axis=1)
|
130 |
hsdpa_user_throughput_df["max_dl_throughput"] = hsdpa_user_throughput_df.max(axis=1)
|
131 |
max_simult_hsdpa_users_df["max_users"] = max_simult_hsdpa_users_df.max(axis=1)
|
132 |
# add average of Trafics, throughput and max users
|
|
|
|
|
133 |
hsdpa_user_throughput_df["avg_dl_throughput"] = hsdpa_user_throughput_df.mean(
|
134 |
axis=1
|
135 |
)
|
|
|
239 |
new_column="fails_comments",
|
240 |
)
|
241 |
kpi_df["fails_comments"] = kpi_df["fails_comments"].apply(summarize_fails_comments)
|
242 |
+
kpi_df["fails_comments"] = kpi_df["fails_comments"].apply(
|
243 |
+
lambda x: fails_comments_mapping.get(x, x)
|
244 |
+
)
|
245 |
+
kpi_df = combine_comments(
|
246 |
+
kpi_df,
|
247 |
+
"operational_comments",
|
248 |
+
"fails_comments",
|
249 |
+
new_column="final_comments",
|
250 |
+
)
|
251 |
+
|
252 |
+
wcel_analysis_df = kpi_df[WCEL_ANALYSIS_COLUMNS]
|
253 |
+
wcel_analysis_df = wcel_analysis_df.droplevel(level=1, axis=1)
|
254 |
+
|
255 |
+
# Rename
|
256 |
+
wcel_analysis_df = wcel_analysis_df.rename(
|
257 |
+
columns={
|
258 |
+
"WCEL_name": "name",
|
259 |
+
"Average_cell_availability_daily": "Avg_availability",
|
260 |
+
"number_of_days_exceeding_availability_threshold_daily": "Avail_exceed_days",
|
261 |
+
"availability_comment_daily": "availability_comment",
|
262 |
+
"number_of_days_with_iub_frameloss_exceeded": "iub_frameloss_exceed_days",
|
263 |
+
"number_of_days_with_hsdpa_congestion_rate_iub_exceeded": "hsdpa_iub_exceed_days",
|
264 |
+
"number_of_days_with_rrc_fail_ac_exceeded": "ac_fail_exceed_days",
|
265 |
+
"number_of_days_with_rrc_fail_ac_ul_exceeded": "ac_ul_fail_exceed_days",
|
266 |
+
"number_of_days_with_rrc_fail_ac_dl_exceeded": "ac_dl_fail_exceed_days",
|
267 |
+
"number_of_days_with_rrc_fail_code_exceeded": "code_fail_exceed_days",
|
268 |
+
"number_of_days_with_rrc_fail_bts_exceeded": "bts_fail_exceed_days",
|
269 |
+
}
|
270 |
+
)
|
271 |
+
# remove row if name less than 5 characters
|
272 |
+
wcel_analysis_df = wcel_analysis_df[wcel_analysis_df["name"].str.len() >= 5]
|
273 |
+
|
274 |
+
wcel_analysis_df["code"] = wcel_analysis_df["name"].str.split("_").str[0]
|
275 |
+
wcel_analysis_df["code"] = (
|
276 |
+
pd.to_numeric(wcel_analysis_df["code"], errors="coerce").fillna(0).astype(int)
|
277 |
+
)
|
278 |
+
wcel_analysis_df["Region"] = wcel_analysis_df["name"].str.split("_").str[1]
|
279 |
+
# move code to the first column
|
280 |
+
wcel_analysis_df = wcel_analysis_df[
|
281 |
+
["code", "Region"]
|
282 |
+
+ [col for col in wcel_analysis_df if col != "code" and col != "Region"]
|
283 |
+
]
|
284 |
+
|
285 |
+
# Load physical database
|
286 |
+
physical_db: pd.DataFrame = get_physical_db()
|
287 |
+
|
288 |
+
# Convert code_sector to code
|
289 |
+
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
|
290 |
+
# remove duplicates
|
291 |
+
physical_db = physical_db.drop_duplicates(subset="code")
|
292 |
+
|
293 |
+
# keep only code and longitude and latitude
|
294 |
+
physical_db = physical_db[["code", "Longitude", "Latitude"]]
|
295 |
+
|
296 |
+
physical_db["code"] = (
|
297 |
+
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
298 |
+
)
|
299 |
+
|
300 |
+
wcel_analysis_df = pd.merge(
|
301 |
+
wcel_analysis_df,
|
302 |
+
physical_db,
|
303 |
+
on="code",
|
304 |
+
how="left",
|
305 |
+
)
|
306 |
+
|
307 |
+
return [wcel_analysis_df, kpi_df]
|
308 |
|
309 |
|
310 |
def load_and_process_wcel_capacity_data(
|
|
|
336 |
df = kpi_naming_cleaning(df)
|
337 |
df = create_daily_date(df)
|
338 |
df = df[KPI_COLUMNS]
|
339 |
+
dfs = wcel_kpi_analysis(
|
340 |
df,
|
341 |
num_last_days,
|
342 |
num_threshold_days,
|
|
|
345 |
hsdpa_congestion_rate_iub_threshold,
|
346 |
fails_treshold,
|
347 |
)
|
348 |
+
return dfs
|