addind NEI database
Browse files- .gitignore +2 -1
- README.md +2 -1
- app.py +18 -0
- queries/process_neighbors.py +191 -0
- utils/check_sheet_exist.py +2 -0
- utils/utils_vars.py +1 -0
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
/.history
|
2 |
/.venv
|
3 |
/__pycache__
|
4 |
-
__pycache__
|
|
|
|
1 |
/.history
|
2 |
/.venv
|
3 |
/__pycache__
|
4 |
+
__pycache__
|
5 |
+
/data2
|
README.md
CHANGED
@@ -36,7 +36,8 @@ You can access the hosted version of the app at [https://davmelchi-db-query.hf.s
|
|
36 |
|
37 |
- [*] check if required sheets exist in the dump file
|
38 |
- [*] Add a download button for all databases
|
39 |
-
- [
|
40 |
- [ ] Add dashboards for each database (Count of NE)
|
41 |
- [ ] Add the ability to select columns
|
42 |
- [ ] Error handling
|
|
|
|
36 |
|
37 |
- [*] check if required sheets exist in the dump file
|
38 |
- [*] Add a download button for all databases
|
39 |
+
- [*] Add option to download Neighbors database
|
40 |
- [ ] Add dashboards for each database (Count of NE)
|
41 |
- [ ] Add the ability to select columns
|
42 |
- [ ] Error handling
|
43 |
+
- [ ] Add option to update physical db
|
app.py
CHANGED
@@ -5,6 +5,10 @@ import streamlit as st
|
|
5 |
from queries.process_all_db import process_all_tech_db
|
6 |
from queries.process_gsm import process_gsm_data_to_excel
|
7 |
from queries.process_lte import process_lte_data_to_excel
|
|
|
|
|
|
|
|
|
8 |
from queries.process_wcdma import process_wcdma_data_to_excel
|
9 |
from utils.check_sheet_exist import Technology, execute_checks_sheets_exist
|
10 |
from utils.utils_vars import UtilsVars
|
@@ -39,6 +43,9 @@ def download_button(database_type):
|
|
39 |
elif database_type == "All":
|
40 |
data = UtilsVars.final_all_database
|
41 |
file_name = f"All database_{time.time()}.xlsx"
|
|
|
|
|
|
|
42 |
st.download_button(
|
43 |
type="primary",
|
44 |
label=f"Download {database_type} Database File",
|
@@ -60,6 +67,7 @@ def execute_process_all_tech_db(uploaded_file):
|
|
60 |
|
61 |
|
62 |
col1, col2, col3, col4 = st.columns(4)
|
|
|
63 |
if uploaded_file is not None:
|
64 |
# UtilsVars.file_path = uploaded_file
|
65 |
try:
|
@@ -75,6 +83,7 @@ if uploaded_file is not None:
|
|
75 |
"gsm": ["BTS", "BCF", "TRX"],
|
76 |
"wcdma": ["WCEL", "WBTS", "WNCEL"],
|
77 |
"lte": ["LNBTS", "LNCEL", "LNCEL_FDD", "LNCEL_TDD"],
|
|
|
78 |
"""
|
79 |
)
|
80 |
|
@@ -104,6 +113,15 @@ if uploaded_file is not None:
|
|
104 |
"Generate All DBs",
|
105 |
on_click=lambda: execute_process_all_tech_db(uploaded_file),
|
106 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
except Exception as e:
|
109 |
st.error(f"Error: {e}")
|
|
|
5 |
from queries.process_all_db import process_all_tech_db
|
6 |
from queries.process_gsm import process_gsm_data_to_excel
|
7 |
from queries.process_lte import process_lte_data_to_excel
|
8 |
+
from queries.process_neighbors import (
|
9 |
+
process_neighbors_data,
|
10 |
+
process_neighbors_data_to_excel,
|
11 |
+
)
|
12 |
from queries.process_wcdma import process_wcdma_data_to_excel
|
13 |
from utils.check_sheet_exist import Technology, execute_checks_sheets_exist
|
14 |
from utils.utils_vars import UtilsVars
|
|
|
43 |
elif database_type == "All":
|
44 |
data = UtilsVars.final_all_database
|
45 |
file_name = f"All database_{time.time()}.xlsx"
|
46 |
+
elif database_type == "NEI":
|
47 |
+
data = UtilsVars.neighbors_database
|
48 |
+
file_name = f"Neighbors database_{time.time()}.xlsx"
|
49 |
st.download_button(
|
50 |
type="primary",
|
51 |
label=f"Download {database_type} Database File",
|
|
|
67 |
|
68 |
|
69 |
col1, col2, col3, col4 = st.columns(4)
|
70 |
+
col5, col6, col7, col8 = st.columns(4)
|
71 |
if uploaded_file is not None:
|
72 |
# UtilsVars.file_path = uploaded_file
|
73 |
try:
|
|
|
83 |
"gsm": ["BTS", "BCF", "TRX"],
|
84 |
"wcdma": ["WCEL", "WBTS", "WNCEL"],
|
85 |
"lte": ["LNBTS", "LNCEL", "LNCEL_FDD", "LNCEL_TDD"],
|
86 |
+
"neighbors": ["ADCE", "ADJS", "ADJI", "ADJG", "ADJW", "BTS", "WCEL"],
|
87 |
"""
|
88 |
)
|
89 |
|
|
|
113 |
"Generate All DBs",
|
114 |
on_click=lambda: execute_process_all_tech_db(uploaded_file),
|
115 |
)
|
116 |
+
if Technology.neighbors == True:
|
117 |
+
with col5:
|
118 |
+
st.button(
|
119 |
+
"Generate NEI DB",
|
120 |
+
on_click=lambda: process_database(
|
121 |
+
process_neighbors_data_to_excel, "NEI"
|
122 |
+
),
|
123 |
+
# on_click=lambda: process_neighbors_data(uploaded_file),
|
124 |
+
)
|
125 |
|
126 |
except Exception as e:
|
127 |
st.error(f"Error: {e}")
|
queries/process_neighbors.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
from utils.convert_to_excel import convert_dfs, save_dataframe
|
4 |
+
from utils.utils_vars import UtilsVars
|
5 |
+
|
6 |
+
ADCE_INITIAL_COLUMNS = [
|
7 |
+
"ID_BTS",
|
8 |
+
"lac_id",
|
9 |
+
]
|
10 |
+
|
11 |
+
ADJS_INITIAL_COLUMNS = [
|
12 |
+
"ID_WCEL",
|
13 |
+
"lac_id",
|
14 |
+
]
|
15 |
+
|
16 |
+
BTS_SOURCE = [
|
17 |
+
"ID_BTS",
|
18 |
+
"name",
|
19 |
+
]
|
20 |
+
BTS_TARGET = [
|
21 |
+
"lac_id",
|
22 |
+
"name",
|
23 |
+
]
|
24 |
+
|
25 |
+
WCEL_SOURCE = [
|
26 |
+
"ID_WCEL",
|
27 |
+
"name",
|
28 |
+
]
|
29 |
+
|
30 |
+
WCEL_TARGET = [
|
31 |
+
"lac_id",
|
32 |
+
"name",
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
def process_neighbors_data(file_path: str):
|
37 |
+
"""
|
38 |
+
Process data from the specified file path.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
file_path (str): The path to the file.
|
42 |
+
"""
|
43 |
+
# Read the specific sheet into a DataFrame
|
44 |
+
dfs = pd.read_excel(
|
45 |
+
file_path,
|
46 |
+
sheet_name=["ADCE", "ADJS", "ADJI", "ADJG", "ADJW", "BTS", "WCEL"],
|
47 |
+
engine="calamine",
|
48 |
+
skiprows=[0],
|
49 |
+
)
|
50 |
+
|
51 |
+
# # Process ADCE data
|
52 |
+
df_adce = dfs["ADCE"]
|
53 |
+
df_adce.columns = df_adce.columns.str.replace(r"[ ]", "", regex=True)
|
54 |
+
df_adce["ID_BTS"] = (
|
55 |
+
df_adce[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
|
56 |
+
)
|
57 |
+
df_adce["lac_id"] = (
|
58 |
+
df_adce[["adjacentCellIdLac", "adjacentCellIdCI"]]
|
59 |
+
.astype(str)
|
60 |
+
.apply("_".join, axis=1)
|
61 |
+
)
|
62 |
+
df_adce["lac_id"] = df_adce["lac_id"].str.replace(".0", "")
|
63 |
+
df_adce = df_adce[ADCE_INITIAL_COLUMNS]
|
64 |
+
|
65 |
+
# Process BTS data
|
66 |
+
df_bts = dfs["BTS"]
|
67 |
+
df_bts.columns = df_bts.columns.str.replace(r"[ ]", "", regex=True)
|
68 |
+
df_bts["ID_BTS"] = df_bts[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
|
69 |
+
df_bts["lac_id"] = (
|
70 |
+
df_bts[["locationAreaIdLAC", "cellId"]].astype(str).apply("_".join, axis=1)
|
71 |
+
)
|
72 |
+
|
73 |
+
df_bts_source = df_bts[BTS_SOURCE]
|
74 |
+
df_bts_source.rename(columns={"name": "SOURCE_NAME"}, inplace=True)
|
75 |
+
|
76 |
+
df_bts_target = df_bts[BTS_TARGET]
|
77 |
+
df_bts_target.rename(columns={"name": "TARGET_NAME"}, inplace=True)
|
78 |
+
|
79 |
+
# #create final adce
|
80 |
+
df_adce_final = pd.merge(df_adce, df_bts_source, on="ID_BTS", how="left")
|
81 |
+
df_adce_final = pd.merge(
|
82 |
+
df_adce_final, df_bts_target, on="lac_id", how="left"
|
83 |
+
).dropna()
|
84 |
+
df_adce_final.rename(
|
85 |
+
columns={"ID_BTS": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
|
86 |
+
)
|
87 |
+
|
88 |
+
# process ADJS data
|
89 |
+
df_adjs = dfs["ADJS"]
|
90 |
+
df_adjs.columns = df_adjs.columns.str.replace(r"[ ]", "", regex=True)
|
91 |
+
|
92 |
+
df_adjs["ID_WCEL"] = (
|
93 |
+
df_adjs[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
|
94 |
+
)
|
95 |
+
df_adjs["lac_id"] = (
|
96 |
+
df_adjs[["AdjsLAC", "AdjsCI"]].astype(str).apply("_".join, axis=1)
|
97 |
+
)
|
98 |
+
df_adjs = df_adjs[ADJS_INITIAL_COLUMNS]
|
99 |
+
|
100 |
+
# process WCEL DATA
|
101 |
+
df_wcel = dfs["WCEL"]
|
102 |
+
df_wcel.columns = df_wcel.columns.str.replace(r"[ ]", "", regex=True)
|
103 |
+
df_wcel["ID_WCEL"] = (
|
104 |
+
df_wcel[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
|
105 |
+
)
|
106 |
+
df_wcel["lac_id"] = df_wcel[["LAC", "CId"]].astype(str).apply("_".join, axis=1)
|
107 |
+
df_wcel = df_wcel[["ID_WCEL", "lac_id", "name"]]
|
108 |
+
|
109 |
+
df_wcel_source = df_wcel[WCEL_SOURCE]
|
110 |
+
df_wcel_source.rename(columns={"name": "SOURCE_NAME"}, inplace=True)
|
111 |
+
|
112 |
+
df_wcel_target = df_wcel[WCEL_TARGET]
|
113 |
+
df_wcel_target.rename(columns={"name": "TARGET_NAME"}, inplace=True)
|
114 |
+
|
115 |
+
# create final adjs
|
116 |
+
df_adjs_final = pd.merge(df_adjs, df_wcel_source, on="ID_WCEL", how="left")
|
117 |
+
df_adjs_final = pd.merge(
|
118 |
+
df_adjs_final, df_wcel_target, on="lac_id", how="left"
|
119 |
+
).dropna()
|
120 |
+
df_adjs_final.rename(
|
121 |
+
columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
|
122 |
+
)
|
123 |
+
|
124 |
+
# process ADJI DATA
|
125 |
+
df_adji = dfs["ADJI"]
|
126 |
+
df_adji.columns = df_adji.columns.str.replace(r"[ ]", "", regex=True)
|
127 |
+
|
128 |
+
df_adji["ID_WCEL"] = (
|
129 |
+
df_adji[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
|
130 |
+
)
|
131 |
+
df_adji["lac_id"] = (
|
132 |
+
df_adji[["AdjiLAC", "AdjiCI"]].astype(str).apply("_".join, axis=1)
|
133 |
+
)
|
134 |
+
df_adji = df_adji[["ID_WCEL", "lac_id"]]
|
135 |
+
|
136 |
+
df_adji_final = pd.merge(df_adji, df_wcel_source, on="ID_WCEL", how="left")
|
137 |
+
df_adji_final = pd.merge(
|
138 |
+
df_adji_final, df_wcel_target, on="lac_id", how="left"
|
139 |
+
).dropna()
|
140 |
+
df_adji_final.rename(
|
141 |
+
columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
|
142 |
+
)
|
143 |
+
|
144 |
+
# process ADJG DATA
|
145 |
+
df_adjg = dfs["ADJG"]
|
146 |
+
df_adjg.columns = df_adjg.columns.str.replace(r"[ ]", "", regex=True)
|
147 |
+
|
148 |
+
df_adjg["ID_WCEL"] = (
|
149 |
+
df_adjg[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
|
150 |
+
)
|
151 |
+
df_adjg["lac_id"] = (
|
152 |
+
df_adjg[["AdjgLAC", "AdjgCI"]].astype(str).apply("_".join, axis=1)
|
153 |
+
)
|
154 |
+
df_adjg = df_adjg[["ID_WCEL", "lac_id"]]
|
155 |
+
|
156 |
+
df_adjg_final = pd.merge(df_adjg, df_wcel_source, on="ID_WCEL", how="left")
|
157 |
+
df_adjg_final = pd.merge(
|
158 |
+
df_adjg_final, df_bts_target, on="lac_id", how="left"
|
159 |
+
).dropna()
|
160 |
+
df_adjg_final.rename(
|
161 |
+
columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
|
162 |
+
)
|
163 |
+
|
164 |
+
# process ADJW DATA
|
165 |
+
df_adjw = dfs["ADJW"]
|
166 |
+
df_adjw.columns = df_adjw.columns.str.replace(r"[ ]", "", regex=True)
|
167 |
+
|
168 |
+
df_adjw["ID_BTS"] = (
|
169 |
+
df_adjw[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
|
170 |
+
)
|
171 |
+
df_adjw["lac_id"] = df_adjw[["lac", "AdjwCId"]].astype(str).apply("_".join, axis=1)
|
172 |
+
df_adjw = df_adjw[["ID_BTS", "lac_id"]]
|
173 |
+
|
174 |
+
df_adjw_final = pd.merge(df_adjw, df_bts_source, on="ID_BTS", how="left")
|
175 |
+
df_adjw_final = pd.merge(
|
176 |
+
df_adjw_final, df_wcel_target, on="lac_id", how="left"
|
177 |
+
).dropna()
|
178 |
+
df_adjw_final.rename(
|
179 |
+
columns={"ID_BTS": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
|
180 |
+
)
|
181 |
+
|
182 |
+
# save_dataframe(df_adjw_final, "ADJW")
|
183 |
+
|
184 |
+
return [df_adjw_final, df_adjg_final, df_adji_final, df_adjs_final, df_adce_final]
|
185 |
+
|
186 |
+
|
187 |
+
def process_neighbors_data_to_excel(file_path: str):
|
188 |
+
neighbors_dfs = process_neighbors_data(file_path)
|
189 |
+
UtilsVars.neighbors_database = convert_dfs(
|
190 |
+
neighbors_dfs, ["ADJW", "ADJG", "ADJI", "ADJS", "ADCE"]
|
191 |
+
)
|
utils/check_sheet_exist.py
CHANGED
@@ -5,11 +5,13 @@ class Technology:
|
|
5 |
gsm = False
|
6 |
wcdma = False
|
7 |
lte = False
|
|
|
8 |
|
9 |
|
10 |
# Dictionary of sheet groups to check
|
11 |
sheets_to_check = {
|
12 |
"gsm": ["BTS", "BCF", "TRX"],
|
|
|
13 |
"wcdma": ["WCEL", "WBTS", "WNCEL"],
|
14 |
"lte": ["LNBTS", "LNCEL", "LNCEL_FDD", "LNCEL_TDD"],
|
15 |
}
|
|
|
5 |
gsm = False
|
6 |
wcdma = False
|
7 |
lte = False
|
8 |
+
neighbors = False
|
9 |
|
10 |
|
11 |
# Dictionary of sheet groups to check
|
12 |
sheets_to_check = {
|
13 |
"gsm": ["BTS", "BCF", "TRX"],
|
14 |
+
"neighbors": ["ADCE", "ADJS", "ADJI", "ADJG", "ADJW", "BTS", "WCEL"],
|
15 |
"wcdma": ["WCEL", "WBTS", "WNCEL"],
|
16 |
"lte": ["LNBTS", "LNCEL", "LNCEL_FDD", "LNCEL_TDD"],
|
17 |
}
|
utils/utils_vars.py
CHANGED
@@ -34,6 +34,7 @@ class UtilsVars:
|
|
34 |
final_wcdma_database = ""
|
35 |
all_db_dfs = []
|
36 |
final_all_database = ""
|
|
|
37 |
file_path = ""
|
38 |
physisal_db = get_physical_db()
|
39 |
|
|
|
34 |
final_wcdma_database = ""
|
35 |
all_db_dfs = []
|
36 |
final_all_database = ""
|
37 |
+
neighbors_database = ""
|
38 |
file_path = ""
|
39 |
physisal_db = get_physical_db()
|
40 |
|