GSM Congested vs operational distance Trial 1
Browse files
apps/kpi_analysis/gsm_capacity.py
CHANGED
@@ -42,7 +42,7 @@ col1, col2 = st.columns(2)
|
|
42 |
|
43 |
threshold_col1, threshold_col2 = st.columns(2)
|
44 |
threshold_col3, threshold_col4 = st.columns(2)
|
45 |
-
max_traffic_threshold_col1,
|
46 |
|
47 |
|
48 |
if (
|
@@ -86,10 +86,10 @@ if (
|
|
86 |
max_traffic_threshold = st.number_input(
|
87 |
"TCH Utilization Max Traffic Threshold", min_value=0, value=90
|
88 |
)
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
if st.button("Analyze Data", type="primary"):
|
95 |
dfs = analyze_gsm_data(
|
@@ -103,15 +103,17 @@ if (
|
|
103 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
104 |
tch_blocking_threshold=tch_blocking_threshold,
|
105 |
max_traffic_threshold=max_traffic_threshold,
|
|
|
106 |
)
|
107 |
|
108 |
if dfs is not None:
|
109 |
gsm_analysis_df: pd.DataFrame = dfs[0]
|
110 |
bh_kpi_df: pd.DataFrame = dfs[1]
|
111 |
daily_kpi_df: pd.DataFrame = dfs[2]
|
|
|
112 |
GsmCapacity.final_results = convert_gsm_dfs(
|
113 |
-
[gsm_analysis_df, bh_kpi_df, daily_kpi_df],
|
114 |
-
["GSM_Analysis", "BH_KPI_Analysis", "Daily_KPI_Analysis"],
|
115 |
)
|
116 |
|
117 |
# GsmCapacity.final_results = convert_gsm_dfs(
|
|
|
42 |
|
43 |
threshold_col1, threshold_col2 = st.columns(2)
|
44 |
threshold_col3, threshold_col4 = st.columns(2)
|
45 |
+
max_traffic_threshold_col1, operational_neighbours_distance_col1 = st.columns(2)
|
46 |
|
47 |
|
48 |
if (
|
|
|
86 |
max_traffic_threshold = st.number_input(
|
87 |
"TCH Utilization Max Traffic Threshold", min_value=0, value=90
|
88 |
)
|
89 |
+
with operational_neighbours_distance_col1:
|
90 |
+
operational_neighbours_distance = st.number_input(
|
91 |
+
"Operational Neighbours Distance", min_value=0, value=1
|
92 |
+
)
|
93 |
|
94 |
if st.button("Analyze Data", type="primary"):
|
95 |
dfs = analyze_gsm_data(
|
|
|
103 |
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
104 |
tch_blocking_threshold=tch_blocking_threshold,
|
105 |
max_traffic_threshold=max_traffic_threshold,
|
106 |
+
operational_neighbours_distance=operational_neighbours_distance,
|
107 |
)
|
108 |
|
109 |
if dfs is not None:
|
110 |
gsm_analysis_df: pd.DataFrame = dfs[0]
|
111 |
bh_kpi_df: pd.DataFrame = dfs[1]
|
112 |
daily_kpi_df: pd.DataFrame = dfs[2]
|
113 |
+
distance_df: pd.DataFrame = dfs[3]
|
114 |
GsmCapacity.final_results = convert_gsm_dfs(
|
115 |
+
[gsm_analysis_df, bh_kpi_df, daily_kpi_df, distance_df],
|
116 |
+
["GSM_Analysis", "BH_KPI_Analysis", "Daily_KPI_Analysis", "Distance"],
|
117 |
)
|
118 |
|
119 |
# GsmCapacity.final_results = convert_gsm_dfs(
|
process_kpi/process_gsm_capacity.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
|
|
|
4 |
from queries.process_gsm import combined_gsm_database
|
5 |
from utils.check_sheet_exist import execute_checks_sheets_exist
|
6 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
@@ -20,8 +21,18 @@ from utils.kpi_analysis_utils import (
|
|
20 |
|
21 |
class GsmCapacity:
|
22 |
final_results = None
|
|
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
GSM_COLUMNS = [
|
26 |
"ID_BTS",
|
27 |
"site_name",
|
@@ -46,6 +57,8 @@ GSM_COLUMNS = [
|
|
46 |
"number_trx_per_bcf",
|
47 |
"TRX_TCH",
|
48 |
"MAL_TCH",
|
|
|
|
|
49 |
]
|
50 |
|
51 |
TRX_COLUMNS = [
|
@@ -404,10 +417,58 @@ def get_gsm_databases(dump_path: str) -> pd.DataFrame:
|
|
404 |
lambda x: GsmAnalysis.erlangB_table.get(int(x), 0)
|
405 |
)
|
406 |
|
407 |
-
# save_dataframe(gsm_df, "GSM")
|
408 |
return gsm_df
|
409 |
|
410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
def analyze_gsm_data(
|
412 |
dump_path: str,
|
413 |
daily_report_path: str,
|
@@ -419,7 +480,9 @@ def analyze_gsm_data(
|
|
419 |
sdcch_blocking_threshold: float,
|
420 |
tch_blocking_threshold: float,
|
421 |
max_traffic_threshold: int,
|
|
|
422 |
):
|
|
|
423 |
|
424 |
daily_kpi_dfs: pd.DataFrame = analyse_daily_data(
|
425 |
daily_report_path=daily_report_path,
|
@@ -540,9 +603,9 @@ def analyze_gsm_data(
|
|
540 |
new_column="Final comment",
|
541 |
)
|
542 |
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
|
548 |
-
return [gsm_analysis_df, bh_kpi_full_df, daily_kpi_full_df]
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
|
4 |
+
from apps.multi_points_distance_calculator import calculate_distances
|
5 |
from queries.process_gsm import combined_gsm_database
|
6 |
from utils.check_sheet_exist import execute_checks_sheets_exist
|
7 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
|
|
21 |
|
22 |
class GsmCapacity:
|
23 |
final_results = None
|
24 |
+
operational_neighbours_df = None
|
25 |
|
26 |
|
27 |
+
OPERATIONAL_NEIGHBOURS_COLUMNS = [
|
28 |
+
"ID_BTS",
|
29 |
+
"name",
|
30 |
+
"operational_comment",
|
31 |
+
"BH Congestion status",
|
32 |
+
"Longitude",
|
33 |
+
"Latitude",
|
34 |
+
]
|
35 |
+
|
36 |
GSM_COLUMNS = [
|
37 |
"ID_BTS",
|
38 |
"site_name",
|
|
|
57 |
"number_trx_per_bcf",
|
58 |
"TRX_TCH",
|
59 |
"MAL_TCH",
|
60 |
+
"Longitude",
|
61 |
+
"Latitude",
|
62 |
]
|
63 |
|
64 |
TRX_COLUMNS = [
|
|
|
417 |
lambda x: GsmAnalysis.erlangB_table.get(int(x), 0)
|
418 |
)
|
419 |
|
|
|
420 |
return gsm_df
|
421 |
|
422 |
|
423 |
+
def get_operational_neighbours(distance: int) -> pd.DataFrame:
|
424 |
+
|
425 |
+
operational_df: pd.DataFrame = GsmCapacity.operational_neighbours_df
|
426 |
+
operational_df = operational_df[
|
427 |
+
["ID_BTS", "name", "operational_comment", "Longitude", "Latitude"]
|
428 |
+
]
|
429 |
+
# keep row only if column "operational_comment" is not "Operational is OK"
|
430 |
+
operational_df = operational_df[
|
431 |
+
operational_df["operational_comment"] != "Operational is OK"
|
432 |
+
]
|
433 |
+
|
434 |
+
# Rename all columns in operational_df by adding "Dataset2_" prefix
|
435 |
+
operational_df = operational_df.add_prefix("Dataset2_")
|
436 |
+
|
437 |
+
congested_df: pd.DataFrame = GsmCapacity.operational_neighbours_df
|
438 |
+
congested_df = congested_df[
|
439 |
+
["ID_BTS", "name", "BH Congestion status", "Longitude", "Latitude"]
|
440 |
+
]
|
441 |
+
|
442 |
+
# Remove NaN , empty string
|
443 |
+
congested_df = congested_df[congested_df["BH Congestion status"] != ""]
|
444 |
+
|
445 |
+
# Remove rows where "BH Congestion status" is "nan, nan"
|
446 |
+
congested_df = congested_df[congested_df["BH Congestion status"] != "nan, nan"]
|
447 |
+
|
448 |
+
# Rename all columns in congested_df by adding "Dataset1_" prefix
|
449 |
+
congested_df = congested_df.add_prefix("Dataset1_")
|
450 |
+
|
451 |
+
distances_dfs = calculate_distances(
|
452 |
+
congested_df,
|
453 |
+
operational_df,
|
454 |
+
"Dataset1_ID_BTS",
|
455 |
+
"Dataset1_Latitude",
|
456 |
+
"Dataset1_Longitude",
|
457 |
+
"Dataset2_ID_BTS",
|
458 |
+
"Dataset2_Latitude",
|
459 |
+
"Dataset2_Longitude",
|
460 |
+
)
|
461 |
+
distances_df = distances_dfs[0]
|
462 |
+
df1 = distances_df[distances_df["Distance_km"] <= distance]
|
463 |
+
|
464 |
+
# save_dataframe(operational_df, "Operational Neighbours")
|
465 |
+
# save_dataframe(congested_df, "Congested Neighbours")
|
466 |
+
# # save_dataframe(distances_df, "Distances")
|
467 |
+
# save_dataframe(df1, "Closest Neighbours")
|
468 |
+
|
469 |
+
return df1
|
470 |
+
|
471 |
+
|
472 |
def analyze_gsm_data(
|
473 |
dump_path: str,
|
474 |
daily_report_path: str,
|
|
|
480 |
sdcch_blocking_threshold: float,
|
481 |
tch_blocking_threshold: float,
|
482 |
max_traffic_threshold: int,
|
483 |
+
operational_neighbours_distance: int,
|
484 |
):
|
485 |
+
GsmCapacity.operational_neighbours_df = None
|
486 |
|
487 |
daily_kpi_dfs: pd.DataFrame = analyse_daily_data(
|
488 |
daily_report_path=daily_report_path,
|
|
|
603 |
new_column="Final comment",
|
604 |
)
|
605 |
|
606 |
+
GsmCapacity.operational_neighbours_df = gsm_analysis_df[
|
607 |
+
OPERATIONAL_NEIGHBOURS_COLUMNS
|
608 |
+
]
|
609 |
+
distance_df = get_operational_neighbours(operational_neighbours_distance)
|
610 |
|
611 |
+
return [gsm_analysis_df, bh_kpi_full_df, daily_kpi_full_df, distance_df]
|