lte drop trafic app
Browse files- app.py +4 -0
- apps/kpi_analysis/lte_drop_trafic.py +161 -0
- assets/traffic_drop.png +0 -0
app.py
CHANGED
@@ -158,6 +158,10 @@ if check_password():
|
|
158 |
"apps/kpi_analysis/lte_capacity.py",
|
159 |
title=" π LTE Capacity Analysis",
|
160 |
),
|
|
|
|
|
|
|
|
|
161 |
],
|
162 |
"Paging Analysis": [
|
163 |
st.Page(
|
|
|
158 |
"apps/kpi_analysis/lte_capacity.py",
|
159 |
title=" π LTE Capacity Analysis",
|
160 |
),
|
161 |
+
st.Page(
|
162 |
+
"apps/kpi_analysis/lte_drop_trafic.py",
|
163 |
+
title=" π LTE Drop Traffic Analysis",
|
164 |
+
),
|
165 |
],
|
166 |
"Paging Analysis": [
|
167 |
st.Page(
|
apps/kpi_analysis/lte_drop_trafic.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
from utils.utils_vars import get_physical_db
|
8 |
+
|
9 |
+
st.title("LTE Cell Traffic Drop Detection")
|
10 |
+
doc_col, image_col = st.columns(2)
|
11 |
+
|
12 |
+
with doc_col:
|
13 |
+
st.write(
|
14 |
+
"""
|
15 |
+
This App allow you to detect cells with significant traffic drop in LTE Network.
|
16 |
+
- Upload traffic CSV file
|
17 |
+
- Select number of last days for drop analysis
|
18 |
+
- Select loss percentage threshold
|
19 |
+
"""
|
20 |
+
)
|
21 |
+
|
22 |
+
with image_col:
|
23 |
+
st.image("./assets/traffic_drop.png", width=250)
|
24 |
+
|
25 |
+
uploaded_file = st.file_uploader("Upload traffic CSV file", type=["csv"])
|
26 |
+
|
27 |
+
if uploaded_file:
|
28 |
+
df = pd.read_csv(uploaded_file, sep=";")
|
29 |
+
|
30 |
+
df["PERIOD_START_TIME"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
|
31 |
+
df.sort_values("PERIOD_START_TIME", inplace=True)
|
32 |
+
|
33 |
+
df["Total_Traffic"] = (
|
34 |
+
df["4G/LTE DL Traffic Volume (GBytes)"]
|
35 |
+
+ df["4G/LTE UL Traffic Volume (GBytes)"]
|
36 |
+
)
|
37 |
+
|
38 |
+
unique_dates = sorted(df["PERIOD_START_TIME"].unique())
|
39 |
+
last_n_days = st.slider(
|
40 |
+
"Select number of last days for drop analysis",
|
41 |
+
1,
|
42 |
+
min(10, len(unique_dates) - 1),
|
43 |
+
2,
|
44 |
+
)
|
45 |
+
treshold_percent = st.slider("Loss percentage threshold", 10, 100, 50)
|
46 |
+
|
47 |
+
last_days = unique_dates[-last_n_days:]
|
48 |
+
long_term_days = unique_dates[:-last_n_days]
|
49 |
+
|
50 |
+
last_df = df[df["PERIOD_START_TIME"].isin(last_days)]
|
51 |
+
long_term_df = df[df["PERIOD_START_TIME"].isin(long_term_days)]
|
52 |
+
|
53 |
+
avg_last = last_df.groupby("LNCEL name")["Total_Traffic"].mean()
|
54 |
+
avg_long = long_term_df.groupby("LNCEL name")["Total_Traffic"].mean()
|
55 |
+
|
56 |
+
result = pd.DataFrame(
|
57 |
+
{"avg_long_term": avg_long, "avg_last_days": avg_last}
|
58 |
+
).dropna()
|
59 |
+
|
60 |
+
result["drop_%"] = (
|
61 |
+
(result["avg_long_term"] - result["avg_last_days"])
|
62 |
+
/ result["avg_long_term"]
|
63 |
+
* 100
|
64 |
+
)
|
65 |
+
result = result[result["drop_%"] >= treshold_percent]
|
66 |
+
result = result.reset_index()
|
67 |
+
|
68 |
+
st.subheader("Cells with Significant Traffic Drop")
|
69 |
+
st.dataframe(result)
|
70 |
+
|
71 |
+
def convert_df(df: pd.DataFrame) -> bytes:
|
72 |
+
output = BytesIO()
|
73 |
+
df.to_excel(output, index=False)
|
74 |
+
processed_data = output.getvalue()
|
75 |
+
return processed_data
|
76 |
+
|
77 |
+
if not result.empty:
|
78 |
+
st.download_button(
|
79 |
+
label="π₯ Download affected cells",
|
80 |
+
data=convert_df(result),
|
81 |
+
file_name="traffic_drop_cells.xlsx",
|
82 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
83 |
+
type="primary",
|
84 |
+
)
|
85 |
+
|
86 |
+
@st.fragment
|
87 |
+
def trend_plot():
|
88 |
+
st.subheader("Traffic Trend Plot")
|
89 |
+
default_cell = result["LNCEL name"].iloc[0]
|
90 |
+
selected_cell = st.selectbox(
|
91 |
+
"Select cell to plot",
|
92 |
+
result["LNCEL name"].unique(),
|
93 |
+
index=result["LNCEL name"].unique().tolist().index(default_cell),
|
94 |
+
)
|
95 |
+
|
96 |
+
if selected_cell:
|
97 |
+
trend_df = df[df["LNCEL name"].eq(selected_cell)]
|
98 |
+
fig = px.line(
|
99 |
+
trend_df,
|
100 |
+
x="PERIOD_START_TIME",
|
101 |
+
y="Total_Traffic",
|
102 |
+
title="Traffic Trends",
|
103 |
+
markers=True,
|
104 |
+
height=700,
|
105 |
+
)
|
106 |
+
|
107 |
+
if selected_cell in avg_long:
|
108 |
+
fig.add_shape(
|
109 |
+
type="line",
|
110 |
+
x0=trend_df["PERIOD_START_TIME"].min(),
|
111 |
+
x1=trend_df["PERIOD_START_TIME"].max(),
|
112 |
+
y0=avg_long[selected_cell],
|
113 |
+
y1=avg_long[selected_cell],
|
114 |
+
line=dict(color="blue", dash="dot"),
|
115 |
+
name=f"{selected_cell} Long Term Avg",
|
116 |
+
)
|
117 |
+
|
118 |
+
if last_days:
|
119 |
+
start_date = pd.to_datetime(str(last_days[0]))
|
120 |
+
fig.add_shape(
|
121 |
+
type="line",
|
122 |
+
x0=start_date,
|
123 |
+
x1=start_date,
|
124 |
+
y0=0,
|
125 |
+
y1=trend_df["Total_Traffic"].max(),
|
126 |
+
line=dict(color="red", dash="dash"),
|
127 |
+
name="Start of Last Days",
|
128 |
+
)
|
129 |
+
|
130 |
+
st.plotly_chart(fig, use_container_width=True)
|
131 |
+
|
132 |
+
trend_plot()
|
133 |
+
|
134 |
+
st.subheader("Map of Affected Cells (Bubble Size = Drop %)")
|
135 |
+
result_map = result.copy()
|
136 |
+
physical_db = get_physical_db()
|
137 |
+
|
138 |
+
# Add code column to physical_db element before _
|
139 |
+
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
|
140 |
+
# add code column to result_map
|
141 |
+
result_map["code"] = result_map["LNCEL name"].str.split("_").str[0]
|
142 |
+
|
143 |
+
result_map = pd.merge(result_map, physical_db, on="code", how="left")
|
144 |
+
|
145 |
+
result_map["Latitude"] = result_map["Latitude"]
|
146 |
+
result_map["Longitude"] = result_map["Longitude"]
|
147 |
+
fig_map = px.scatter_map(
|
148 |
+
result_map,
|
149 |
+
lat="Latitude",
|
150 |
+
lon="Longitude",
|
151 |
+
size="drop_%",
|
152 |
+
color=result_map["drop_%"],
|
153 |
+
color_continuous_scale="reds",
|
154 |
+
hover_name="LNCEL name",
|
155 |
+
zoom=6,
|
156 |
+
height=600,
|
157 |
+
title="Dropped Cells Map",
|
158 |
+
map_style="satellite-streets",
|
159 |
+
)
|
160 |
+
|
161 |
+
st.plotly_chart(fig_map, use_container_width=True)
|
assets/traffic_drop.png
ADDED
![]() |