new physical db
Browse files- .gitignore +1 -1
- physical_db/physical_database.csv +0 -0
- queries/process_trx.py +53 -0
.gitignore
CHANGED
@@ -4,4 +4,4 @@
|
|
4 |
__pycache__
|
5 |
/data2
|
6 |
/physical_db/physical_database.csv
|
7 |
-
/physical_db
|
|
|
4 |
__pycache__
|
5 |
/data2
|
6 |
/physical_db/physical_database.csv
|
7 |
+
# /physical_db
|
physical_db/physical_database.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
queries/process_trx.py
CHANGED
@@ -56,6 +56,13 @@ TRX_BTS_COLUMNS = [
|
|
56 |
"trxFrequencyType",
|
57 |
"trxRfPower",
|
58 |
"tsc",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
]
|
60 |
|
61 |
|
@@ -123,6 +130,52 @@ def process_trx_with_bts_name(file_path: str):
|
|
123 |
df_bts = process_small_bts_data(file_path=file_path)
|
124 |
|
125 |
df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
|
127 |
|
128 |
# UtilsVars.all_db_dfs.append(df_trx_bts_name)
|
|
|
56 |
"trxFrequencyType",
|
57 |
"trxRfPower",
|
58 |
"tsc",
|
59 |
+
"TCHs",
|
60 |
+
"SDs",
|
61 |
+
"BCCHs",
|
62 |
+
"CCCHs",
|
63 |
+
"CBCs",
|
64 |
+
"TotalChannels",
|
65 |
+
"Signal",
|
66 |
]
|
67 |
|
68 |
|
|
|
130 |
df_bts = process_small_bts_data(file_path=file_path)
|
131 |
|
132 |
df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
|
133 |
+
|
134 |
+
# Filter columns strictly by names like "channelXType"
|
135 |
+
channel_columns = [
|
136 |
+
col
|
137 |
+
for col in df_trx_bts_name.columns
|
138 |
+
if col.startswith("channel") and col.endswith("Type")
|
139 |
+
]
|
140 |
+
|
141 |
+
# TCHs SDs BCCH CCCH CBC Total Signal
|
142 |
+
|
143 |
+
# Calculate "count of channels per TRX" for each row
|
144 |
+
df_trx_bts_name["TCHs"] = df_trx_bts_name[channel_columns].apply(
|
145 |
+
lambda row: (row == 2).sum(), axis=1
|
146 |
+
)
|
147 |
+
df_trx_bts_name["SDs"] = df_trx_bts_name[channel_columns].apply(
|
148 |
+
lambda row: (row == 3).sum(), axis=1
|
149 |
+
)
|
150 |
+
|
151 |
+
df_trx_bts_name["BCCHs"] = df_trx_bts_name[channel_columns].apply(
|
152 |
+
lambda row: (row == 4).sum(), axis=1
|
153 |
+
)
|
154 |
+
|
155 |
+
df_trx_bts_name["CCCHs"] = df_trx_bts_name[channel_columns].apply(
|
156 |
+
lambda row: (row == 6).sum(), axis=1
|
157 |
+
)
|
158 |
+
|
159 |
+
df_trx_bts_name["CBCs"] = df_trx_bts_name[channel_columns].apply(
|
160 |
+
lambda row: (row == 8).sum(), axis=1
|
161 |
+
)
|
162 |
+
|
163 |
+
# Total Channels = TCHs + SDs + BCCHs + CCCHs + CBCs
|
164 |
+
|
165 |
+
df_trx_bts_name["TotalChannels"] = (
|
166 |
+
df_trx_bts_name["TCHs"]
|
167 |
+
+ df_trx_bts_name["SDs"]
|
168 |
+
+ df_trx_bts_name["BCCHs"]
|
169 |
+
+ df_trx_bts_name["CCCHs"]
|
170 |
+
+ df_trx_bts_name["CBCs"]
|
171 |
+
)
|
172 |
+
|
173 |
+
# Signal = BCCHs + CCCHs + CBCs
|
174 |
+
|
175 |
+
df_trx_bts_name["Signal"] = (
|
176 |
+
df_trx_bts_name["BCCHs"] + df_trx_bts_name["CCCHs"] + df_trx_bts_name["CBCs"]
|
177 |
+
)
|
178 |
+
|
179 |
df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
|
180 |
|
181 |
# UtilsVars.all_db_dfs.append(df_trx_bts_name)
|