new physical db
Browse files- .gitignore +1 -1
- physical_db/physical_database.csv +0 -0
- queries/process_trx.py +53 -0
.gitignore
CHANGED
|
@@ -4,4 +4,4 @@
|
|
| 4 |
__pycache__
|
| 5 |
/data2
|
| 6 |
/physical_db/physical_database.csv
|
| 7 |
-
/physical_db
|
|
|
|
| 4 |
__pycache__
|
| 5 |
/data2
|
| 6 |
/physical_db/physical_database.csv
|
| 7 |
+
# /physical_db
|
physical_db/physical_database.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
queries/process_trx.py
CHANGED
|
@@ -56,6 +56,13 @@ TRX_BTS_COLUMNS = [
|
|
| 56 |
"trxFrequencyType",
|
| 57 |
"trxRfPower",
|
| 58 |
"tsc",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
]
|
| 60 |
|
| 61 |
|
|
@@ -123,6 +130,52 @@ def process_trx_with_bts_name(file_path: str):
|
|
| 123 |
df_bts = process_small_bts_data(file_path=file_path)
|
| 124 |
|
| 125 |
df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
|
| 127 |
|
| 128 |
# UtilsVars.all_db_dfs.append(df_trx_bts_name)
|
|
|
|
| 56 |
"trxFrequencyType",
|
| 57 |
"trxRfPower",
|
| 58 |
"tsc",
|
| 59 |
+
"TCHs",
|
| 60 |
+
"SDs",
|
| 61 |
+
"BCCHs",
|
| 62 |
+
"CCCHs",
|
| 63 |
+
"CBCs",
|
| 64 |
+
"TotalChannels",
|
| 65 |
+
"Signal",
|
| 66 |
]
|
| 67 |
|
| 68 |
|
|
|
|
| 130 |
df_bts = process_small_bts_data(file_path=file_path)
|
| 131 |
|
| 132 |
df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
|
| 133 |
+
|
| 134 |
+
# Filter columns strictly by names like "channelXType"
|
| 135 |
+
channel_columns = [
|
| 136 |
+
col
|
| 137 |
+
for col in df_trx_bts_name.columns
|
| 138 |
+
if col.startswith("channel") and col.endswith("Type")
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
# TCHs SDs BCCH CCCH CBC Total Signal
|
| 142 |
+
|
| 143 |
+
# Calculate "count of channels per TRX" for each row
|
| 144 |
+
df_trx_bts_name["TCHs"] = df_trx_bts_name[channel_columns].apply(
|
| 145 |
+
lambda row: (row == 2).sum(), axis=1
|
| 146 |
+
)
|
| 147 |
+
df_trx_bts_name["SDs"] = df_trx_bts_name[channel_columns].apply(
|
| 148 |
+
lambda row: (row == 3).sum(), axis=1
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
df_trx_bts_name["BCCHs"] = df_trx_bts_name[channel_columns].apply(
|
| 152 |
+
lambda row: (row == 4).sum(), axis=1
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
df_trx_bts_name["CCCHs"] = df_trx_bts_name[channel_columns].apply(
|
| 156 |
+
lambda row: (row == 6).sum(), axis=1
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
df_trx_bts_name["CBCs"] = df_trx_bts_name[channel_columns].apply(
|
| 160 |
+
lambda row: (row == 8).sum(), axis=1
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# Total Channels = TCHs + SDs + BCCHs + CCCHs + CBCs
|
| 164 |
+
|
| 165 |
+
df_trx_bts_name["TotalChannels"] = (
|
| 166 |
+
df_trx_bts_name["TCHs"]
|
| 167 |
+
+ df_trx_bts_name["SDs"]
|
| 168 |
+
+ df_trx_bts_name["BCCHs"]
|
| 169 |
+
+ df_trx_bts_name["CCCHs"]
|
| 170 |
+
+ df_trx_bts_name["CBCs"]
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# Signal = BCCHs + CCCHs + CBCs
|
| 174 |
+
|
| 175 |
+
df_trx_bts_name["Signal"] = (
|
| 176 |
+
df_trx_bts_name["BCCHs"] + df_trx_bts_name["CCCHs"] + df_trx_bts_name["CBCs"]
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
|
| 180 |
|
| 181 |
# UtilsVars.all_db_dfs.append(df_trx_bts_name)
|