DavMelchi commited on
Commit
53fa613
·
1 Parent(s): 542b27a

new physical db

Browse files
.gitignore CHANGED
@@ -4,4 +4,4 @@
4
  __pycache__
5
  /data2
6
  /physical_db/physical_database.csv
7
- /physical_db
 
4
  __pycache__
5
  /data2
6
  /physical_db/physical_database.csv
7
+ # /physical_db
physical_db/physical_database.csv CHANGED
The diff for this file is too large to render. See raw diff
 
queries/process_trx.py CHANGED
@@ -56,6 +56,13 @@ TRX_BTS_COLUMNS = [
56
  "trxFrequencyType",
57
  "trxRfPower",
58
  "tsc",
 
 
 
 
 
 
 
59
  ]
60
 
61
 
@@ -123,6 +130,52 @@ def process_trx_with_bts_name(file_path: str):
123
  df_bts = process_small_bts_data(file_path=file_path)
124
 
125
  df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
127
 
128
  # UtilsVars.all_db_dfs.append(df_trx_bts_name)
 
56
  "trxFrequencyType",
57
  "trxRfPower",
58
  "tsc",
59
+ "TCHs",
60
+ "SDs",
61
+ "BCCHs",
62
+ "CCCHs",
63
+ "CBCs",
64
+ "TotalChannels",
65
+ "Signal",
66
  ]
67
 
68
 
 
130
  df_bts = process_small_bts_data(file_path=file_path)
131
 
132
  df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
133
+
134
+ # Filter columns strictly by names like "channelXType"
135
+ channel_columns = [
136
+ col
137
+ for col in df_trx_bts_name.columns
138
+ if col.startswith("channel") and col.endswith("Type")
139
+ ]
140
+
141
+ # TCHs SDs BCCH CCCH CBC Total Signal
142
+
143
+ # Calculate "count of channels per TRX" for each row
144
+ df_trx_bts_name["TCHs"] = df_trx_bts_name[channel_columns].apply(
145
+ lambda row: (row == 2).sum(), axis=1
146
+ )
147
+ df_trx_bts_name["SDs"] = df_trx_bts_name[channel_columns].apply(
148
+ lambda row: (row == 3).sum(), axis=1
149
+ )
150
+
151
+ df_trx_bts_name["BCCHs"] = df_trx_bts_name[channel_columns].apply(
152
+ lambda row: (row == 4).sum(), axis=1
153
+ )
154
+
155
+ df_trx_bts_name["CCCHs"] = df_trx_bts_name[channel_columns].apply(
156
+ lambda row: (row == 6).sum(), axis=1
157
+ )
158
+
159
+ df_trx_bts_name["CBCs"] = df_trx_bts_name[channel_columns].apply(
160
+ lambda row: (row == 8).sum(), axis=1
161
+ )
162
+
163
+ # Total Channels = TCHs + SDs + BCCHs + CCCHs + CBCs
164
+
165
+ df_trx_bts_name["TotalChannels"] = (
166
+ df_trx_bts_name["TCHs"]
167
+ + df_trx_bts_name["SDs"]
168
+ + df_trx_bts_name["BCCHs"]
169
+ + df_trx_bts_name["CCCHs"]
170
+ + df_trx_bts_name["CBCs"]
171
+ )
172
+
173
+ # Signal = BCCHs + CCCHs + CBCs
174
+
175
+ df_trx_bts_name["Signal"] = (
176
+ df_trx_bts_name["BCCHs"] + df_trx_bts_name["CCCHs"] + df_trx_bts_name["CBCs"]
177
+ )
178
+
179
  df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
180
 
181
  # UtilsVars.all_db_dfs.append(df_trx_bts_name)