Improve GSM capacity charts
Browse files
apps/kpi_analysis/gsm_capacity.py
CHANGED
@@ -137,7 +137,12 @@ if (
|
|
137 |
final_comments_df = (
|
138 |
gsm_analysis_df.groupby("Final comment").size().reset_index(name="count")
|
139 |
)
|
140 |
-
fig = px.bar(
|
|
|
|
|
|
|
|
|
|
|
141 |
fig.update_layout(height=1000)
|
142 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
143 |
st.plotly_chart(fig, use_container_width=True)
|
@@ -149,31 +154,90 @@ if (
|
|
149 |
.size()
|
150 |
.reset_index(name="count")
|
151 |
)
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
st.
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
# Add dataframe and ploty bar chart with "BH Congestion status" distribution in gsm_analysis_df in 2 columns
|
|
|
|
|
159 |
bh_congestion_status_df = (
|
160 |
gsm_analysis_df.groupby("BH Congestion status")
|
161 |
.size()
|
162 |
.reset_index(name="count")
|
163 |
)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
operational_comments_df = (
|
171 |
gsm_analysis_df.groupby("operational_comment")
|
172 |
.size()
|
173 |
.reset_index(name="count")
|
174 |
)
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
final_comments_df = (
|
138 |
gsm_analysis_df.groupby("Final comment").size().reset_index(name="count")
|
139 |
)
|
140 |
+
fig = px.bar(
|
141 |
+
final_comments_df,
|
142 |
+
x="Final comment",
|
143 |
+
y="count",
|
144 |
+
title="Final comment distribution",
|
145 |
+
)
|
146 |
fig.update_layout(height=1000)
|
147 |
fig.update_traces(texttemplate="%{value}", textposition="outside")
|
148 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
154 |
.size()
|
155 |
.reset_index(name="count")
|
156 |
)
|
157 |
+
# Add Pie chart with "Final comment summary" distribution in gsm_analysis_df in 2 columns
|
158 |
+
st.markdown("***")
|
159 |
+
st.markdown(":blue[**Final comment summary distribution**]")
|
160 |
+
final_comments_summary_col1, final_comments_summary_col2 = st.columns((1, 3))
|
161 |
+
with final_comments_summary_col1:
|
162 |
+
st.write(final_comments_summary_df)
|
163 |
+
with final_comments_summary_col2:
|
164 |
+
fig = px.pie(
|
165 |
+
final_comments_summary_df,
|
166 |
+
names="Final comment summary",
|
167 |
+
values="count",
|
168 |
+
hover_name="Final comment summary",
|
169 |
+
hover_data=["count"],
|
170 |
+
title="GSM Analysis comment distribution",
|
171 |
+
)
|
172 |
+
fig.update_layout(height=800)
|
173 |
+
fig.update_traces(
|
174 |
+
texttemplate="%{label}: %{value}",
|
175 |
+
textfont_size=15,
|
176 |
+
textposition="outside",
|
177 |
+
)
|
178 |
+
st.plotly_chart(fig, use_container_width=True)
|
179 |
|
180 |
# Add dataframe and ploty bar chart with "BH Congestion status" distribution in gsm_analysis_df in 2 columns
|
181 |
+
st.markdown("***")
|
182 |
+
st.markdown(":blue[**BH Congestion status distribution**]")
|
183 |
bh_congestion_status_df = (
|
184 |
gsm_analysis_df.groupby("BH Congestion status")
|
185 |
.size()
|
186 |
.reset_index(name="count")
|
187 |
)
|
188 |
+
# Replace "" cell in "BH Congestion status" with "No Congestion"
|
189 |
+
bh_congestion_status_df["BH Congestion status"] = bh_congestion_status_df[
|
190 |
+
"BH Congestion status"
|
191 |
+
].replace("", "No Congestion")
|
192 |
+
# Replace "nan, nan" cell in "BH Congestion status" with "No KPI"
|
193 |
+
bh_congestion_status_df["BH Congestion status"] = bh_congestion_status_df[
|
194 |
+
"BH Congestion status"
|
195 |
+
].replace("nan, nan", "No KPI")
|
196 |
+
|
197 |
+
bh_congestion_status_col1, bh_congestion_status_col2 = st.columns((2, 1))
|
198 |
+
with bh_congestion_status_col2:
|
199 |
+
st.write(bh_congestion_status_df)
|
200 |
+
with bh_congestion_status_col1:
|
201 |
+
fig = px.pie(
|
202 |
+
bh_congestion_status_df,
|
203 |
+
names="BH Congestion status",
|
204 |
+
values="count",
|
205 |
+
hover_name="BH Congestion status",
|
206 |
+
hover_data=["count"],
|
207 |
+
title="BH Congestion status distribution",
|
208 |
+
)
|
209 |
+
fig.update_layout(height=800)
|
210 |
+
fig.update_traces(
|
211 |
+
texttemplate="%{label}: %{value}",
|
212 |
+
textfont_size=15,
|
213 |
+
textposition="outside",
|
214 |
+
)
|
215 |
+
st.plotly_chart(fig, use_container_width=True)
|
216 |
+
|
217 |
+
# Add dataframe and ploty pie chart with "operational_comment" distribution in gsm_analysis_df in 2 columns
|
218 |
+
st.markdown("***")
|
219 |
+
st.markdown(":blue[**Operational comments distribution**]")
|
220 |
operational_comments_df = (
|
221 |
gsm_analysis_df.groupby("operational_comment")
|
222 |
.size()
|
223 |
.reset_index(name="count")
|
224 |
)
|
225 |
+
operational_comments_col1, operational_comments_col2 = st.columns((1, 2))
|
226 |
+
with operational_comments_col1:
|
227 |
+
st.write(operational_comments_df)
|
228 |
+
with operational_comments_col2:
|
229 |
+
fig = px.pie(
|
230 |
+
operational_comments_df,
|
231 |
+
names="operational_comment",
|
232 |
+
values="count",
|
233 |
+
hover_name="operational_comment",
|
234 |
+
hover_data=["count"],
|
235 |
+
title="Operational comments distribution",
|
236 |
+
)
|
237 |
+
fig.update_layout(height=600)
|
238 |
+
fig.update_traces(
|
239 |
+
texttemplate="%{label}: %{value}",
|
240 |
+
textfont_size=15,
|
241 |
+
textposition="outside",
|
242 |
+
)
|
243 |
+
st.plotly_chart(fig, use_container_width=True)
|