Adding global trafic analysis
Browse files- app.py +4 -0
- apps/kpi_analysis/trafic_analysis.py +399 -0
app.py
CHANGED
@@ -176,6 +176,10 @@ if check_password():
|
|
176 |
"apps/kpi_analysis/anomalie.py",
|
177 |
title=" 📊 KPIs Anomaly Detection",
|
178 |
),
|
|
|
|
|
|
|
|
|
179 |
],
|
180 |
"Documentations": [
|
181 |
st.Page(
|
|
|
176 |
"apps/kpi_analysis/anomalie.py",
|
177 |
title=" 📊 KPIs Anomaly Detection",
|
178 |
),
|
179 |
+
st.Page(
|
180 |
+
"apps/kpi_analysis/trafic_analysis.py",
|
181 |
+
title=" 📊 Trafic Analysis",
|
182 |
+
),
|
183 |
],
|
184 |
"Documentations": [
|
185 |
st.Page(
|
apps/kpi_analysis/trafic_analysis.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
from utils.convert_to_excel import convert_dfs, save_dataframe
|
8 |
+
from utils.utils_vars import get_physical_db
|
9 |
+
|
10 |
+
|
11 |
+
class TraficAnalysis:
|
12 |
+
last_period_df: pd.DataFrame = None
|
13 |
+
|
14 |
+
|
15 |
+
############### PROCESSING ###############
|
16 |
+
def extract_code(name):
|
17 |
+
name = name.replace(" ", "_") if isinstance(name, str) else None
|
18 |
+
return int(name.split("_")[0]) if name and len(name) >= 10 else None
|
19 |
+
|
20 |
+
|
21 |
+
def preprocess_2g(df: pd.DataFrame) -> pd.DataFrame:
|
22 |
+
df = df[df["BCF name"].str.len() >= 10].copy()
|
23 |
+
df["2g_data_trafic"] = df["TRAFFIC_PS DL"] + df["PS_UL_Load"]
|
24 |
+
df.rename(columns={"2G_Carried Traffic": "2g_voice_trafic"}, inplace=True)
|
25 |
+
df["code"] = df["BCF name"].apply(extract_code)
|
26 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
|
27 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
28 |
+
df = df.groupby(["date", "ID", "code"], as_index=False)[
|
29 |
+
["2g_data_trafic", "2g_voice_trafic"]
|
30 |
+
].sum()
|
31 |
+
return df
|
32 |
+
|
33 |
+
|
34 |
+
def preprocess_3g(df: pd.DataFrame) -> pd.DataFrame:
|
35 |
+
df = df[df["WBTS name"].str.len() >= 10].copy()
|
36 |
+
df["code"] = df["WBTS name"].apply(extract_code)
|
37 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
|
38 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
39 |
+
df.rename(
|
40 |
+
columns={
|
41 |
+
"Total CS traffic - Erl": "3g_voice_trafic",
|
42 |
+
"Total_Data_Traffic": "3g_data_trafic",
|
43 |
+
},
|
44 |
+
inplace=True,
|
45 |
+
)
|
46 |
+
df = df.groupby(["date", "ID", "code"], as_index=False)[
|
47 |
+
["3g_voice_trafic", "3g_data_trafic"]
|
48 |
+
].sum()
|
49 |
+
return df
|
50 |
+
|
51 |
+
|
52 |
+
def preprocess_lte(df: pd.DataFrame) -> pd.DataFrame:
|
53 |
+
df = df[df["LNBTS name"].str.len() >= 10].copy()
|
54 |
+
df["lte_data_trafic"] = (
|
55 |
+
df["4G/LTE DL Traffic Volume (GBytes)"]
|
56 |
+
+ df["4G/LTE UL Traffic Volume (GBytes)"]
|
57 |
+
)
|
58 |
+
df["code"] = df["LNBTS name"].apply(extract_code)
|
59 |
+
df["date"] = pd.to_datetime(df["PERIOD_START_TIME"], format="%m.%d.%Y")
|
60 |
+
df["ID"] = df["date"].astype(str) + "_" + df["code"].astype(str)
|
61 |
+
df = df.groupby(["date", "ID", "code"], as_index=False)[["lte_data_trafic"]].sum()
|
62 |
+
return df
|
63 |
+
|
64 |
+
|
65 |
+
############################## ANALYSIS ################
|
66 |
+
def merge_and_compare(df_2g, df_3g, df_lte, pre_range, post_range, last_period_range):
|
67 |
+
|
68 |
+
# Load physical database
|
69 |
+
physical_db = get_physical_db()
|
70 |
+
physical_db["code"] = physical_db["Code_Sector"].str.split("_").str[0]
|
71 |
+
physical_db["code"] = (
|
72 |
+
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
73 |
+
)
|
74 |
+
physical_db = physical_db[["code", "Longitude", "Latitude", "City"]]
|
75 |
+
physical_db = physical_db.drop_duplicates(subset="code")
|
76 |
+
|
77 |
+
df = pd.merge(df_2g, df_3g, on=["date", "ID", "code"], how="outer")
|
78 |
+
df = pd.merge(df, df_lte, on=["date", "ID", "code"], how="outer")
|
79 |
+
# print(df)
|
80 |
+
|
81 |
+
for col in [
|
82 |
+
"2g_data_trafic",
|
83 |
+
"2g_voice_trafic",
|
84 |
+
"3g_voice_trafic",
|
85 |
+
"3g_data_trafic",
|
86 |
+
"lte_data_trafic",
|
87 |
+
]:
|
88 |
+
if col not in df:
|
89 |
+
df[col] = 0
|
90 |
+
|
91 |
+
df.fillna(0, inplace=True)
|
92 |
+
|
93 |
+
df["total_voice_trafic"] = df["2g_voice_trafic"] + df["3g_voice_trafic"]
|
94 |
+
df["total_data_trafic"] = (
|
95 |
+
df["2g_data_trafic"] + df["3g_data_trafic"] + df["lte_data_trafic"]
|
96 |
+
)
|
97 |
+
df = pd.merge(df, physical_db, on=["code"], how="left")
|
98 |
+
|
99 |
+
# Assign period based on date range
|
100 |
+
pre_start, pre_end = pd.to_datetime(pre_range[0]), pd.to_datetime(pre_range[1])
|
101 |
+
post_start, post_end = pd.to_datetime(post_range[0]), pd.to_datetime(post_range[1])
|
102 |
+
last_period_start, last_period_end = pd.to_datetime(
|
103 |
+
last_period_range[0]
|
104 |
+
), pd.to_datetime(last_period_range[1])
|
105 |
+
|
106 |
+
last_period = df[
|
107 |
+
(df["date"] >= last_period_start) & (df["date"] <= last_period_end)
|
108 |
+
]
|
109 |
+
|
110 |
+
def assign_period(date):
|
111 |
+
if pre_start <= date <= pre_end:
|
112 |
+
return "pre"
|
113 |
+
elif post_start <= date <= post_end:
|
114 |
+
return "post"
|
115 |
+
else:
|
116 |
+
return "other"
|
117 |
+
|
118 |
+
df["period"] = df["date"].apply(assign_period)
|
119 |
+
|
120 |
+
comparison = df[df["period"].isin(["pre", "post"])]
|
121 |
+
|
122 |
+
pivot = (
|
123 |
+
comparison.groupby(["code", "period"])[
|
124 |
+
["total_voice_trafic", "total_data_trafic"]
|
125 |
+
]
|
126 |
+
.sum()
|
127 |
+
.unstack()
|
128 |
+
)
|
129 |
+
pivot.columns = [f"{metric}_{period}" for metric, period in pivot.columns]
|
130 |
+
pivot = pivot.reset_index()
|
131 |
+
|
132 |
+
# Differences
|
133 |
+
pivot["total_voice_trafic_diff"] = (
|
134 |
+
pivot["total_voice_trafic_post"] - pivot["total_voice_trafic_pre"]
|
135 |
+
)
|
136 |
+
pivot["total_data_trafic_diff"] = (
|
137 |
+
pivot["total_data_trafic_post"] - pivot["total_data_trafic_pre"]
|
138 |
+
)
|
139 |
+
|
140 |
+
for metric in ["total_voice_trafic", "total_data_trafic"]:
|
141 |
+
pivot[f"{metric}_diff_pct"] = (
|
142 |
+
(pivot.get(f"{metric}_post", 0) - pivot.get(f"{metric}_pre", 0))
|
143 |
+
/ pivot.get(f"{metric}_pre", 1)
|
144 |
+
) * 100
|
145 |
+
return df, last_period, pivot.round(2)
|
146 |
+
|
147 |
+
|
148 |
+
############################## UI #########################
|
149 |
+
st.title("📊 Global Trafic Analysis - 2G / 3G / LTE")
|
150 |
+
doc_col, image_col = st.columns(2)
|
151 |
+
|
152 |
+
with doc_col:
|
153 |
+
st.write(
|
154 |
+
"""
|
155 |
+
The report analyzes 2G / 3G / LTE traffic :
|
156 |
+
- 2G Traffic Report in CSV format (required columns : BCF name, PERIOD_START_TIME, TRAFFIC_PS DL, PS_UL_Load)
|
157 |
+
- 3G Traffic Report in CSV format (required columns : WBTS name, PERIOD_START_TIME, Total CS traffic - Erl, Total_Data_Traffic)
|
158 |
+
- LTE Traffic Report in CSV format (required columns : LNBTS name, PERIOD_START_TIME, 4G/LTE DL Traffic Volume (GBytes), 4G/LTE UL Traffic Volume (GBytes))
|
159 |
+
"""
|
160 |
+
)
|
161 |
+
|
162 |
+
# with image_col:
|
163 |
+
# st.image("./assets/trafic_analysis.png", width=250)
|
164 |
+
|
165 |
+
|
166 |
+
upload_2g_col, upload_3g_col, upload_lte_col = st.columns(3)
|
167 |
+
with upload_2g_col:
|
168 |
+
two_g_file = st.file_uploader(
|
169 |
+
"Upload 2G Traffic Report", type=["csv", "xls", "xlsx"]
|
170 |
+
)
|
171 |
+
with upload_3g_col:
|
172 |
+
three_g_file = st.file_uploader(
|
173 |
+
"Upload 3G Traffic Report", type=["csv", "xls", "xlsx"]
|
174 |
+
)
|
175 |
+
with upload_lte_col:
|
176 |
+
lte_file = st.file_uploader(
|
177 |
+
"Upload LTE Traffic Report", type=["csv", "xls", "xlsx"]
|
178 |
+
)
|
179 |
+
|
180 |
+
pre_range_col, post_range_col = st.columns(2)
|
181 |
+
with pre_range_col:
|
182 |
+
pre_range = st.date_input("Pre-period (from - to)", [])
|
183 |
+
with post_range_col:
|
184 |
+
post_range = st.date_input("Post-period (from - to)", [])
|
185 |
+
|
186 |
+
last_period_range_col, number_of_top_trafic_sites_col = st.columns(2)
|
187 |
+
with last_period_range_col:
|
188 |
+
last_period_range = st.date_input("Last period (from - to)", [])
|
189 |
+
with number_of_top_trafic_sites_col:
|
190 |
+
number_of_top_trafic_sites = st.number_input(
|
191 |
+
"Number of top traffic sites", value=25
|
192 |
+
)
|
193 |
+
|
194 |
+
if len(pre_range) != 2 or len(post_range) != 2:
|
195 |
+
st.warning("⚠️ Please select 2 dates for each period (pre and post).")
|
196 |
+
st.stop()
|
197 |
+
if not all([two_g_file, three_g_file, lte_file]):
|
198 |
+
st.info("Please upload all 3 reports and select the comparison periods.")
|
199 |
+
st.stop()
|
200 |
+
|
201 |
+
if st.button("🔍 Run Analysis"):
|
202 |
+
|
203 |
+
df_2g = pd.read_csv(two_g_file, delimiter=";")
|
204 |
+
df_3g = pd.read_csv(three_g_file, delimiter=";")
|
205 |
+
df_lte = pd.read_csv(lte_file, delimiter=";")
|
206 |
+
|
207 |
+
df_2g_clean = preprocess_2g(df_2g)
|
208 |
+
df_3g_clean = preprocess_3g(df_3g)
|
209 |
+
df_lte_clean = preprocess_lte(df_lte)
|
210 |
+
|
211 |
+
full_df, last_period, summary_df = merge_and_compare(
|
212 |
+
df_2g_clean, df_3g_clean, df_lte_clean, pre_range, post_range, last_period_range
|
213 |
+
)
|
214 |
+
|
215 |
+
# 🔍 Display Summary
|
216 |
+
st.success("✅ Analysis completed")
|
217 |
+
st.subheader("📈 Summary Analysis Pre / Post")
|
218 |
+
st.dataframe(summary_df)
|
219 |
+
TraficAnalysis.last_period_df = last_period
|
220 |
+
|
221 |
+
#######################################################################################################""
|
222 |
+
|
223 |
+
#######################################################################################################
|
224 |
+
if TraficAnalysis.last_period_df is not None:
|
225 |
+
|
226 |
+
df = TraficAnalysis.last_period_df
|
227 |
+
# Get top trafics sites based on total data trafic during last period
|
228 |
+
top_sites = (
|
229 |
+
df.groupby(["code", "City"])["total_data_trafic"]
|
230 |
+
.sum()
|
231 |
+
.sort_values(ascending=False)
|
232 |
+
)
|
233 |
+
top_sites = top_sites.head(number_of_top_trafic_sites)
|
234 |
+
|
235 |
+
st.subheader(f"Top {number_of_top_trafic_sites} sites by data traffic")
|
236 |
+
chart_col, data_col = st.columns(2)
|
237 |
+
with data_col:
|
238 |
+
st.dataframe(top_sites.sort_values(ascending=True))
|
239 |
+
# chart
|
240 |
+
fig = px.bar(
|
241 |
+
top_sites.reset_index(),
|
242 |
+
y=top_sites.reset_index()[["City", "code"]].agg(
|
243 |
+
lambda x: "_".join(map(str, x)), axis=1
|
244 |
+
),
|
245 |
+
x="total_data_trafic",
|
246 |
+
title=f"Top {number_of_top_trafic_sites} sites by data traffic",
|
247 |
+
orientation="h",
|
248 |
+
text="total_data_trafic",
|
249 |
+
text_auto=True,
|
250 |
+
)
|
251 |
+
# fig.update_layout(height=600)
|
252 |
+
with chart_col:
|
253 |
+
st.plotly_chart(fig)
|
254 |
+
|
255 |
+
# Top sites by voice trafic during last period
|
256 |
+
top_sites_voice = (
|
257 |
+
df.groupby(["code", "City"])["total_voice_trafic"]
|
258 |
+
.sum()
|
259 |
+
.sort_values(ascending=False)
|
260 |
+
)
|
261 |
+
top_sites_voice = top_sites_voice.head(number_of_top_trafic_sites)
|
262 |
+
|
263 |
+
st.subheader(f"Top {number_of_top_trafic_sites} sites by voice traffic")
|
264 |
+
chart_col, data_col = st.columns(2)
|
265 |
+
with data_col:
|
266 |
+
st.dataframe(top_sites_voice.sort_values(ascending=True))
|
267 |
+
# chart
|
268 |
+
fig = px.bar(
|
269 |
+
top_sites_voice.reset_index(),
|
270 |
+
y=top_sites_voice.reset_index()[["City", "code"]].agg(
|
271 |
+
lambda x: "_".join(map(str, x)), axis=1
|
272 |
+
),
|
273 |
+
x="total_voice_trafic",
|
274 |
+
title=f"Top {number_of_top_trafic_sites} sites by voice traffic",
|
275 |
+
orientation="h",
|
276 |
+
text="total_voice_trafic",
|
277 |
+
text_auto=True,
|
278 |
+
)
|
279 |
+
# fig.update_layout(height=600)
|
280 |
+
with chart_col:
|
281 |
+
st.plotly_chart(fig)
|
282 |
+
|
283 |
+
#####################################################
|
284 |
+
min_size = 5
|
285 |
+
max_size = 40
|
286 |
+
# Map of sum of data trafic during last period
|
287 |
+
# Aggregate total data traffic
|
288 |
+
df_data = (
|
289 |
+
df.groupby(["code", "City", "Latitude", "Longitude"])["total_data_trafic"]
|
290 |
+
.sum()
|
291 |
+
.reset_index()
|
292 |
+
)
|
293 |
+
|
294 |
+
st.subheader("Map of data trafic during last period")
|
295 |
+
|
296 |
+
# Define size range
|
297 |
+
|
298 |
+
# Linear size scaling
|
299 |
+
traffic_data_min = df_data["total_data_trafic"].min()
|
300 |
+
traffic_data_max = df_data["total_data_trafic"].max()
|
301 |
+
df_data["bubble_size"] = df_data["total_data_trafic"].apply(
|
302 |
+
lambda x: min_size
|
303 |
+
+ (max_size - min_size)
|
304 |
+
* (x - traffic_data_min)
|
305 |
+
/ (traffic_data_max - traffic_data_min)
|
306 |
+
)
|
307 |
+
|
308 |
+
# Custom blue color scale: start from visible blue
|
309 |
+
custom_blue_red = [
|
310 |
+
[0.0, "#4292c6"], # light blue
|
311 |
+
[0.2, "#2171b5"],
|
312 |
+
[0.4, "#084594"], # dark blue
|
313 |
+
[0.6, "#cb181d"], # Strong red
|
314 |
+
[0.8, "#a50f15"], # Darker red
|
315 |
+
[1.0, "#67000d"], # Very dark red
|
316 |
+
]
|
317 |
+
|
318 |
+
fig = px.scatter_map(
|
319 |
+
df_data,
|
320 |
+
lat="Latitude",
|
321 |
+
lon="Longitude",
|
322 |
+
color="total_data_trafic",
|
323 |
+
size="bubble_size",
|
324 |
+
color_continuous_scale=custom_blue_red,
|
325 |
+
size_max=max_size,
|
326 |
+
zoom=10,
|
327 |
+
height=600,
|
328 |
+
title="Data traffic distribution",
|
329 |
+
hover_data={"code": True, "total_data_trafic": True},
|
330 |
+
hover_name="code",
|
331 |
+
text=[str(x) for x in df_data["code"]],
|
332 |
+
)
|
333 |
+
|
334 |
+
fig.update_layout(
|
335 |
+
mapbox_style="open-street-map",
|
336 |
+
coloraxis_colorbar=dict(title="Total Data Traffic (MB)"),
|
337 |
+
coloraxis=dict(cmin=traffic_data_min, cmax=traffic_data_max),
|
338 |
+
font=dict(size=10, color="black"),
|
339 |
+
)
|
340 |
+
|
341 |
+
st.plotly_chart(fig)
|
342 |
+
|
343 |
+
########################################################################################
|
344 |
+
# Map of sum of voice trafic during last period
|
345 |
+
# Aggregate total voice traffic
|
346 |
+
df_voice = (
|
347 |
+
df.groupby(["code", "City", "Latitude", "Longitude"])["total_voice_trafic"]
|
348 |
+
.sum()
|
349 |
+
.reset_index()
|
350 |
+
)
|
351 |
+
st.subheader("Map of voice trafic during last period")
|
352 |
+
|
353 |
+
# Linear size scaling
|
354 |
+
traffic_voice_min = df_voice["total_voice_trafic"].min()
|
355 |
+
traffic_voice_max = df_voice["total_voice_trafic"].max()
|
356 |
+
df_voice["bubble_size"] = df_voice["total_voice_trafic"].apply(
|
357 |
+
lambda x: min_size
|
358 |
+
+ (max_size - min_size)
|
359 |
+
* (x - traffic_voice_min)
|
360 |
+
/ (traffic_voice_max - traffic_voice_min)
|
361 |
+
)
|
362 |
+
|
363 |
+
fig = px.scatter_map(
|
364 |
+
df_voice,
|
365 |
+
lat="Latitude",
|
366 |
+
lon="Longitude",
|
367 |
+
color="total_voice_trafic",
|
368 |
+
size="bubble_size",
|
369 |
+
color_continuous_scale=custom_blue_red,
|
370 |
+
size_max=max_size,
|
371 |
+
zoom=10,
|
372 |
+
height=600,
|
373 |
+
title="Voice traffic distribution",
|
374 |
+
hover_data={"code": True, "total_voice_trafic": True},
|
375 |
+
hover_name="code",
|
376 |
+
text=[str(x) for x in df_voice["code"]],
|
377 |
+
)
|
378 |
+
|
379 |
+
fig.update_layout(
|
380 |
+
mapbox_style="open-street-map",
|
381 |
+
coloraxis_colorbar=dict(title="Total Voice Traffic (MB)"),
|
382 |
+
coloraxis=dict(cmin=traffic_voice_min, cmax=traffic_voice_max),
|
383 |
+
font=dict(size=10, color="black"),
|
384 |
+
)
|
385 |
+
|
386 |
+
st.plotly_chart(fig)
|
387 |
+
|
388 |
+
final_dfs = convert_dfs(
|
389 |
+
[full_df, summary_df], ["Global_Trafic_Analysis", "Pre_Post_analysis"]
|
390 |
+
)
|
391 |
+
# 📥 Bouton de téléchargement
|
392 |
+
st.download_button(
|
393 |
+
on_click="ignore",
|
394 |
+
type="primary",
|
395 |
+
label="Download the Analysis Report",
|
396 |
+
data=final_dfs,
|
397 |
+
file_name=f"Global_Trafic_Analysis_Report_{datetime.now()}.xlsx",
|
398 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
399 |
+
)
|