improve functional coding
Browse files- process_kpi/process_wbts_capacity.py +16 -53
- utils/kpi_analysis_utils.py +320 -0
process_kpi/process_wbts_capacity.py
CHANGED
@@ -1,5 +1,11 @@
|
|
1 |
import pandas as pd
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class WbtsCapacity:
|
5 |
final_results: pd.DataFrame = None
|
@@ -31,45 +37,6 @@ def check_deviation(row: pd.Series, max_diff: float = 3.0, type: str = "") -> st
|
|
31 |
return ""
|
32 |
|
33 |
|
34 |
-
def create_daily_date(df: pd.DataFrame) -> pd.DataFrame:
|
35 |
-
"""
|
36 |
-
Create a daily date column from PERIOD_START_TIME and drop unnecessary columns.
|
37 |
-
|
38 |
-
Args:
|
39 |
-
df: DataFrame containing PERIOD_START_TIME column
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
DataFrame with new date column and unnecessary columns removed
|
43 |
-
"""
|
44 |
-
date_df = df.copy()
|
45 |
-
date_df[["mois", "jour", "annee"]] = date_df["PERIOD_START_TIME"].str.split(
|
46 |
-
".", expand=True
|
47 |
-
)
|
48 |
-
date_df["date"] = date_df["annee"] + "-" + date_df["mois"] + "-" + date_df["jour"]
|
49 |
-
# Remove unnecessary columns
|
50 |
-
date_df = date_df.drop(["annee", "mois", "jour", "PERIOD_START_TIME"], axis=1)
|
51 |
-
return date_df
|
52 |
-
|
53 |
-
|
54 |
-
def kpi_naming_cleaning(df: pd.DataFrame) -> pd.DataFrame:
|
55 |
-
"""
|
56 |
-
Clean KPI column names by replacing special characters and standardizing format.
|
57 |
-
|
58 |
-
Args:
|
59 |
-
df: DataFrame with KPI column names to clean
|
60 |
-
|
61 |
-
Returns:
|
62 |
-
DataFrame with cleaned column names
|
63 |
-
"""
|
64 |
-
name_df = df.copy()
|
65 |
-
name_df.columns = name_df.columns.str.replace("[ /(),-.']", "_", regex=True)
|
66 |
-
name_df.columns = name_df.columns.str.replace("___", "_")
|
67 |
-
name_df.columns = name_df.columns.str.replace("__", "_")
|
68 |
-
name_df.columns = name_df.columns.str.replace("%", "perc")
|
69 |
-
name_df.columns = name_df.columns.str.rstrip("_")
|
70 |
-
return name_df
|
71 |
-
|
72 |
-
|
73 |
def max_used_bb_subunits_analysis(
|
74 |
df: pd.DataFrame,
|
75 |
days: int = 7,
|
@@ -288,7 +255,7 @@ def ce_comments_analysis(df: pd.DataFrame) -> pd.DataFrame:
|
|
288 |
)
|
289 |
|
290 |
|
291 |
-
def
|
292 |
df: pd.DataFrame,
|
293 |
num_days: int = 7,
|
294 |
threshold: int = 80,
|
@@ -306,20 +273,12 @@ def create_dfs_per_kpi(
|
|
306 |
Returns:
|
307 |
DataFrame with combined analysis results
|
308 |
"""
|
309 |
-
kpi_columns = df.columns[5:]
|
310 |
pivoted_kpi_dfs = {}
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
# Pivot the dataframe
|
317 |
-
pivot_df = temp_df.pivot(index="DN", columns="date", values=kpi)
|
318 |
-
pivot_df.columns = pd.MultiIndex.from_product([[kpi], pivot_df.columns])
|
319 |
-
pivot_df.columns.names = ["KPI", "Date"]
|
320 |
-
|
321 |
-
# Store in dictionary with KPI name as key
|
322 |
-
pivoted_kpi_dfs[kpi] = pivot_df
|
323 |
|
324 |
# Extract individual KPI DataFrames
|
325 |
wbts_name_df = pivoted_kpi_dfs["WBTS_name"].iloc[:, 0]
|
@@ -403,5 +362,9 @@ def load_data(
|
|
403 |
df = df[[col for col in df.columns if col != "WBTS_name"] + ["WBTS_name"]]
|
404 |
|
405 |
# Perform KPI analysis
|
406 |
-
df =
|
|
|
|
|
|
|
|
|
407 |
return df
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
from utils.kpi_analysis_utils import (
|
4 |
+
create_daily_date,
|
5 |
+
create_dfs_per_kpi,
|
6 |
+
kpi_naming_cleaning,
|
7 |
+
)
|
8 |
+
|
9 |
|
10 |
class WbtsCapacity:
|
11 |
final_results: pd.DataFrame = None
|
|
|
37 |
return ""
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def max_used_bb_subunits_analysis(
|
41 |
df: pd.DataFrame,
|
42 |
days: int = 7,
|
|
|
255 |
)
|
256 |
|
257 |
|
258 |
+
def wbts_kpi_analysis(
|
259 |
df: pd.DataFrame,
|
260 |
num_days: int = 7,
|
261 |
threshold: int = 80,
|
|
|
273 |
Returns:
|
274 |
DataFrame with combined analysis results
|
275 |
"""
|
276 |
+
# kpi_columns = df.columns[5:]
|
277 |
pivoted_kpi_dfs = {}
|
278 |
|
279 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
280 |
+
df=df, pivot_date_column="date", pivot_name_column="DN", kpi_columns_from=5
|
281 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
# Extract individual KPI DataFrames
|
284 |
wbts_name_df = pivoted_kpi_dfs["WBTS_name"].iloc[:, 0]
|
|
|
362 |
df = df[[col for col in df.columns if col != "WBTS_name"] + ["WBTS_name"]]
|
363 |
|
364 |
# Perform KPI analysis
|
365 |
+
df = wbts_kpi_analysis(df, num_days, threshold, number_of_threshold_days)
|
366 |
+
|
367 |
+
# for col, col_index in zip(df.columns, df.columns.get_indexer(df.columns)):
|
368 |
+
# print(f"Column: {col}, Index: {col_index}")
|
369 |
+
|
370 |
return df
|
utils/kpi_analysis_utils.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
class GsmAnalysis:
|
5 |
+
hf_rate_coef = {
|
6 |
+
10: 1.1,
|
7 |
+
20: 1.2,
|
8 |
+
40: 1.4,
|
9 |
+
60: 1.6,
|
10 |
+
70: 1.7,
|
11 |
+
80: 1.8,
|
12 |
+
99: 2.0,
|
13 |
+
100: 1.4,
|
14 |
+
}
|
15 |
+
erlangB_table = {
|
16 |
+
1: 0.0204,
|
17 |
+
2: 0.2234,
|
18 |
+
3: 0.6022,
|
19 |
+
4: 1.092,
|
20 |
+
5: 1.657,
|
21 |
+
6: 2.276,
|
22 |
+
7: 2.935,
|
23 |
+
8: 3.627,
|
24 |
+
9: 4.345,
|
25 |
+
10: 5.084,
|
26 |
+
11: 5.841,
|
27 |
+
12: 6.614,
|
28 |
+
13: 7.401,
|
29 |
+
14: 8.2,
|
30 |
+
15: 9.009,
|
31 |
+
16: 9.828,
|
32 |
+
17: 10.66,
|
33 |
+
18: 11.49,
|
34 |
+
19: 12.33,
|
35 |
+
20: 13.18,
|
36 |
+
21: 14.04,
|
37 |
+
22: 14.9,
|
38 |
+
23: 15.76,
|
39 |
+
24: 16.63,
|
40 |
+
25: 17.5,
|
41 |
+
26: 18.38,
|
42 |
+
27: 19.26,
|
43 |
+
28: 20.15,
|
44 |
+
29: 21.04,
|
45 |
+
30: 21.93,
|
46 |
+
31: 22.83,
|
47 |
+
32: 23.72,
|
48 |
+
33: 24.63,
|
49 |
+
34: 25.53,
|
50 |
+
35: 26.43,
|
51 |
+
36: 27.34,
|
52 |
+
37: 28.25,
|
53 |
+
38: 29.17,
|
54 |
+
39: 30.08,
|
55 |
+
40: 31,
|
56 |
+
41: 31.91,
|
57 |
+
42: 32.84,
|
58 |
+
43: 33.76,
|
59 |
+
44: 34.68,
|
60 |
+
45: 35.61,
|
61 |
+
46: 36.53,
|
62 |
+
47: 37.46,
|
63 |
+
48: 38.39,
|
64 |
+
49: 39.32,
|
65 |
+
50: 40.25,
|
66 |
+
51: 41.19,
|
67 |
+
52: 42.12,
|
68 |
+
53: 43.06,
|
69 |
+
54: 44,
|
70 |
+
55: 44.93,
|
71 |
+
56: 45.88,
|
72 |
+
57: 46.81,
|
73 |
+
58: 47.75,
|
74 |
+
59: 48.7,
|
75 |
+
60: 49.64,
|
76 |
+
61: 50.59,
|
77 |
+
62: 51.53,
|
78 |
+
63: 52.48,
|
79 |
+
64: 53.43,
|
80 |
+
65: 54.38,
|
81 |
+
66: 55.32,
|
82 |
+
67: 56.27,
|
83 |
+
68: 57.22,
|
84 |
+
69: 58.18,
|
85 |
+
70: 59.13,
|
86 |
+
71: 60.08,
|
87 |
+
72: 61.04,
|
88 |
+
73: 61.99,
|
89 |
+
74: 62.94,
|
90 |
+
75: 63.9,
|
91 |
+
76: 64.86,
|
92 |
+
77: 65.81,
|
93 |
+
78: 66.77,
|
94 |
+
79: 67.73,
|
95 |
+
80: 68.69,
|
96 |
+
81: 69.64,
|
97 |
+
82: 70.61,
|
98 |
+
83: 71.57,
|
99 |
+
84: 72.53,
|
100 |
+
85: 73.49,
|
101 |
+
86: 74.45,
|
102 |
+
87: 75.41,
|
103 |
+
88: 76.38,
|
104 |
+
89: 77.34,
|
105 |
+
90: 78.3,
|
106 |
+
91: 79.27,
|
107 |
+
92: 80.23,
|
108 |
+
93: 81.2,
|
109 |
+
94: 82.16,
|
110 |
+
95: 83.13,
|
111 |
+
96: 84.09,
|
112 |
+
97: 85.06,
|
113 |
+
98: 86.03,
|
114 |
+
99: 87,
|
115 |
+
100: 87.97,
|
116 |
+
101: 88.94,
|
117 |
+
102: 89.91,
|
118 |
+
103: 90.88,
|
119 |
+
104: 91.85,
|
120 |
+
105: 92.82,
|
121 |
+
106: 93.79,
|
122 |
+
107: 94.76,
|
123 |
+
108: 95.73,
|
124 |
+
109: 96.71,
|
125 |
+
110: 97.68,
|
126 |
+
111: 98.65,
|
127 |
+
112: 99.63,
|
128 |
+
113: 100.6,
|
129 |
+
114: 101.57,
|
130 |
+
115: 102.54,
|
131 |
+
116: 103.52,
|
132 |
+
117: 104.49,
|
133 |
+
118: 105.47,
|
134 |
+
119: 106.44,
|
135 |
+
120: 107.42,
|
136 |
+
121: 108.4,
|
137 |
+
122: 109.37,
|
138 |
+
123: 110.35,
|
139 |
+
124: 111.32,
|
140 |
+
125: 112.3,
|
141 |
+
126: 113.28,
|
142 |
+
127: 114.25,
|
143 |
+
128: 115.23,
|
144 |
+
129: 116.21,
|
145 |
+
130: 117.19,
|
146 |
+
131: 118.17,
|
147 |
+
132: 119.15,
|
148 |
+
133: 120.12,
|
149 |
+
134: 121.1,
|
150 |
+
135: 122.08,
|
151 |
+
136: 123.07,
|
152 |
+
137: 124.04,
|
153 |
+
138: 125.02,
|
154 |
+
139: 126.01341,
|
155 |
+
140: 127.00918,
|
156 |
+
141: 127.96752,
|
157 |
+
142: 128.98152,
|
158 |
+
143: 129.92152,
|
159 |
+
144: 130.88534,
|
160 |
+
145: 131.96461,
|
161 |
+
146: 132.89897,
|
162 |
+
147: 133.86373,
|
163 |
+
148: 134.82569,
|
164 |
+
149: 135.76295,
|
165 |
+
150: 136.82988,
|
166 |
+
151: 137.79,
|
167 |
+
152: 138.77,
|
168 |
+
153: 139.75,
|
169 |
+
154: 140.74,
|
170 |
+
155: 141.72,
|
171 |
+
156: 142.7,
|
172 |
+
157: 143.69,
|
173 |
+
158: 144.67,
|
174 |
+
159: 145.66,
|
175 |
+
160: 146.64,
|
176 |
+
161: 147.63,
|
177 |
+
162: 148.61,
|
178 |
+
163: 149.6,
|
179 |
+
164: 150.58,
|
180 |
+
165: 151.57,
|
181 |
+
166: 152.55,
|
182 |
+
167: 153.54,
|
183 |
+
168: 154.53,
|
184 |
+
169: 155.51,
|
185 |
+
170: 156.5,
|
186 |
+
171: 157.48,
|
187 |
+
172: 158.47,
|
188 |
+
173: 159.46,
|
189 |
+
174: 160.44,
|
190 |
+
175: 161.43,
|
191 |
+
176: 162.42,
|
192 |
+
177: 163.41,
|
193 |
+
178: 164.39,
|
194 |
+
179: 165.38,
|
195 |
+
180: 166.37,
|
196 |
+
181: 167.36,
|
197 |
+
182: 168.35,
|
198 |
+
183: 169.33,
|
199 |
+
184: 170.32,
|
200 |
+
185: 171.31,
|
201 |
+
186: 172.3,
|
202 |
+
187: 173.29,
|
203 |
+
188: 174.28,
|
204 |
+
189: 175.27,
|
205 |
+
190: 176.26,
|
206 |
+
191: 177.25,
|
207 |
+
192: 178.24,
|
208 |
+
193: 179.23,
|
209 |
+
194: 180.22,
|
210 |
+
195: 181.21,
|
211 |
+
196: 182.2,
|
212 |
+
197: 183.19,
|
213 |
+
198: 184.18,
|
214 |
+
199: 185.17,
|
215 |
+
200: 186.16,
|
216 |
+
}
|
217 |
+
|
218 |
+
|
219 |
+
def kpi_naming_cleaning(df: pd.DataFrame) -> pd.DataFrame:
|
220 |
+
"""
|
221 |
+
Clean KPI column names by replacing special characters and standardizing format.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
df: DataFrame with KPI column names to clean
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
DataFrame with cleaned column names
|
228 |
+
"""
|
229 |
+
name_df = df.copy()
|
230 |
+
name_df.columns = name_df.columns.str.replace("[ /(),-.']", "_", regex=True)
|
231 |
+
name_df.columns = name_df.columns.str.replace("___", "_")
|
232 |
+
name_df.columns = name_df.columns.str.replace("__", "_")
|
233 |
+
name_df.columns = name_df.columns.str.replace("%", "perc")
|
234 |
+
name_df.columns = name_df.columns.str.rstrip("_")
|
235 |
+
return name_df
|
236 |
+
|
237 |
+
|
238 |
+
def create_daily_date(df: pd.DataFrame) -> pd.DataFrame:
|
239 |
+
"""
|
240 |
+
Create a daily date column from PERIOD_START_TIME and drop unnecessary columns.
|
241 |
+
|
242 |
+
Args:
|
243 |
+
df: DataFrame containing PERIOD_START_TIME column
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
DataFrame with new date column and unnecessary columns removed
|
247 |
+
"""
|
248 |
+
date_df = df.copy()
|
249 |
+
date_df[["mois", "jour", "annee"]] = date_df["PERIOD_START_TIME"].str.split(
|
250 |
+
".", expand=True
|
251 |
+
)
|
252 |
+
date_df["date"] = date_df["annee"] + "-" + date_df["mois"] + "-" + date_df["jour"]
|
253 |
+
# Remove unnecessary columns
|
254 |
+
date_df = date_df.drop(["annee", "mois", "jour", "PERIOD_START_TIME"], axis=1)
|
255 |
+
return date_df
|
256 |
+
|
257 |
+
|
258 |
+
def create_hourly_date(df: pd.DataFrame):
|
259 |
+
date_df = df
|
260 |
+
date_df[["date_t", "hour"]] = date_df["PERIOD_START_TIME"].str.split(
|
261 |
+
" ", expand=True
|
262 |
+
)
|
263 |
+
date_df[["mois", "jour", "annee"]] = date_df["date_t"].str.split(".", expand=True)
|
264 |
+
date_df["datetime"] = (
|
265 |
+
date_df["annee"]
|
266 |
+
+ "-"
|
267 |
+
+ date_df["mois"]
|
268 |
+
+ "-"
|
269 |
+
+ date_df["jour"]
|
270 |
+
+ " "
|
271 |
+
+ date_df["hour"]
|
272 |
+
)
|
273 |
+
|
274 |
+
date_df["date"] = date_df["annee"] + "-" + date_df["mois"] + "-" + date_df["jour"]
|
275 |
+
|
276 |
+
# Remove columns 'année' and 'mois'
|
277 |
+
date_df = date_df.drop(
|
278 |
+
["annee", "mois", "jour", "date_t", "PERIOD_START_TIME"], axis=1
|
279 |
+
)
|
280 |
+
return date_df
|
281 |
+
|
282 |
+
|
283 |
+
def create_dfs_per_kpi(
|
284 |
+
df: pd.DataFrame = None,
|
285 |
+
pivot_date_column: str = "date",
|
286 |
+
pivot_name_column: str = "BTS_name",
|
287 |
+
kpi_columns_from: int = None,
|
288 |
+
) -> pd.DataFrame:
|
289 |
+
"""
|
290 |
+
Create pivoted DataFrames for each KPI and perform analysis.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
df: DataFrame containing KPI data
|
294 |
+
Returns:
|
295 |
+
DataFrame with combined analysis results
|
296 |
+
"""
|
297 |
+
kpi_columns = df.columns[kpi_columns_from:]
|
298 |
+
# print(kpi_columns)
|
299 |
+
pivoted_kpi_dfs = {}
|
300 |
+
|
301 |
+
# Loop through each KPI and create pivoted DataFrames
|
302 |
+
for kpi in kpi_columns:
|
303 |
+
temp_df = df[[pivot_date_column, pivot_name_column, kpi]].copy()
|
304 |
+
# remove duplicates
|
305 |
+
temp_df = temp_df.drop_duplicates(
|
306 |
+
subset=[pivot_name_column, pivot_date_column], keep="first"
|
307 |
+
)
|
308 |
+
temp_df = temp_df.reset_index()
|
309 |
+
# Pivot the dataframe
|
310 |
+
pivot_df = temp_df.pivot(
|
311 |
+
index=pivot_name_column, columns=pivot_date_column, values=kpi
|
312 |
+
)
|
313 |
+
# print(pivot_df)
|
314 |
+
pivot_df.columns = pd.MultiIndex.from_product([[kpi], pivot_df.columns])
|
315 |
+
pivot_df.columns.names = ["KPI", "Date"]
|
316 |
+
|
317 |
+
# Store in dictionary with KPI name as key
|
318 |
+
pivoted_kpi_dfs[kpi] = pivot_df
|
319 |
+
|
320 |
+
return pivoted_kpi_dfs
|