combined mal and trx into gsm database
Browse files- apps/database_page.py +26 -24
- queries/process_all_db.py +4 -8
- queries/process_gsm.py +14 -5
- queries/process_mal.py +1 -1
- queries/process_trx.py +1 -13
apps/database_page.py
CHANGED
@@ -6,10 +6,12 @@ import streamlit as st
|
|
6 |
from queries.process_all_db import process_all_tech_db
|
7 |
from queries.process_gsm import process_gsm_data_to_excel
|
8 |
from queries.process_lte import process_lte_data_to_excel
|
9 |
-
|
|
|
10 |
from queries.process_mrbts import process_mrbts_data_to_excel
|
11 |
from queries.process_neighbors import process_neighbors_data_to_excel
|
12 |
-
|
|
|
13 |
from queries.process_wcdma import process_wcdma_data_to_excel
|
14 |
from utils.check_sheet_exist import Technology, execute_checks_sheets_exist
|
15 |
from utils.utils_vars import UtilsVars
|
@@ -46,15 +48,15 @@ def download_button(database_type):
|
|
46 |
elif database_type == "NEI":
|
47 |
data = UtilsVars.neighbors_database
|
48 |
file_name = f"Neighbors databases_{datetime.now()}.xlsx"
|
49 |
-
elif database_type == "TRX":
|
50 |
-
|
51 |
-
|
52 |
elif database_type == "MRBTS":
|
53 |
data = UtilsVars.final_mrbts_database
|
54 |
file_name = f"MRBTS database_{datetime.now()}.xlsx"
|
55 |
-
elif database_type == "MAL":
|
56 |
-
|
57 |
-
|
58 |
st.download_button(
|
59 |
type="primary",
|
60 |
label=f"Download {database_type} Database File",
|
@@ -135,16 +137,16 @@ if uploaded_file is not None:
|
|
135 |
"Generate LTE DB",
|
136 |
on_click=lambda: process_database(process_lte_data_to_excel, "LTE"),
|
137 |
)
|
138 |
-
if Technology.trx == True:
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
if Technology.mrbts == True:
|
147 |
-
with
|
148 |
st.button(
|
149 |
"Generate MRBTS",
|
150 |
on_click=lambda: process_database(
|
@@ -152,14 +154,14 @@ if uploaded_file is not None:
|
|
152 |
),
|
153 |
)
|
154 |
|
155 |
-
if Technology.mal == True:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
if Technology.neighbors == True:
|
162 |
-
with
|
163 |
st.button(
|
164 |
"Generate NEI DB",
|
165 |
on_click=lambda: process_database(
|
|
|
6 |
from queries.process_all_db import process_all_tech_db
|
7 |
from queries.process_gsm import process_gsm_data_to_excel
|
8 |
from queries.process_lte import process_lte_data_to_excel
|
9 |
+
|
10 |
+
# from queries.process_mal import process_mal_data_to_excel
|
11 |
from queries.process_mrbts import process_mrbts_data_to_excel
|
12 |
from queries.process_neighbors import process_neighbors_data_to_excel
|
13 |
+
|
14 |
+
# from queries.process_trx import process_trx_with_bts_name_data_to_excel
|
15 |
from queries.process_wcdma import process_wcdma_data_to_excel
|
16 |
from utils.check_sheet_exist import Technology, execute_checks_sheets_exist
|
17 |
from utils.utils_vars import UtilsVars
|
|
|
48 |
elif database_type == "NEI":
|
49 |
data = UtilsVars.neighbors_database
|
50 |
file_name = f"Neighbors databases_{datetime.now()}.xlsx"
|
51 |
+
# elif database_type == "TRX":
|
52 |
+
# data = UtilsVars.final_trx_database
|
53 |
+
# file_name = f"TRX database_{datetime.now()}.xlsx"
|
54 |
elif database_type == "MRBTS":
|
55 |
data = UtilsVars.final_mrbts_database
|
56 |
file_name = f"MRBTS database_{datetime.now()}.xlsx"
|
57 |
+
# elif database_type == "MAL":
|
58 |
+
# data = UtilsVars.final_mal_database
|
59 |
+
# file_name = f"MAL database_{datetime.now()}.xlsx"
|
60 |
st.download_button(
|
61 |
type="primary",
|
62 |
label=f"Download {database_type} Database File",
|
|
|
137 |
"Generate LTE DB",
|
138 |
on_click=lambda: process_database(process_lte_data_to_excel, "LTE"),
|
139 |
)
|
140 |
+
# if Technology.trx == True:
|
141 |
+
# with col5:
|
142 |
+
# st.button(
|
143 |
+
# "Generate TRX DB",
|
144 |
+
# on_click=lambda: process_database(
|
145 |
+
# process_trx_with_bts_name_data_to_excel, "TRX"
|
146 |
+
# ),
|
147 |
+
# )
|
148 |
if Technology.mrbts == True:
|
149 |
+
with col5:
|
150 |
st.button(
|
151 |
"Generate MRBTS",
|
152 |
on_click=lambda: process_database(
|
|
|
154 |
),
|
155 |
)
|
156 |
|
157 |
+
# if Technology.mal == True:
|
158 |
+
# with col7:
|
159 |
+
# st.button(
|
160 |
+
# "Generate MAL",
|
161 |
+
# on_click=lambda: process_database(process_mal_data_to_excel, "MAL"),
|
162 |
+
# )
|
163 |
if Technology.neighbors == True:
|
164 |
+
with col6:
|
165 |
st.button(
|
166 |
"Generate NEI DB",
|
167 |
on_click=lambda: process_database(
|
queries/process_all_db.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
-
from queries.process_gsm import
|
2 |
from queries.process_lte import process_lte_data
|
3 |
-
from queries.process_mal import process_mal_with_bts_name
|
4 |
from queries.process_mrbts import process_mrbts_data
|
5 |
-
from queries.process_trx import process_trx_with_bts_name
|
6 |
from queries.process_wcdma import process_wcdma_data
|
7 |
from utils.convert_to_excel import convert_dfs
|
8 |
from utils.utils_vars import UtilsVars
|
@@ -10,14 +8,12 @@ from utils.utils_vars import UtilsVars
|
|
10 |
|
11 |
def process_all_tech_db(filepath: str):
|
12 |
UtilsVars.all_db_dfs.clear()
|
13 |
-
|
14 |
process_wcdma_data(filepath)
|
15 |
-
process_lte_data(filepath)
|
16 |
-
process_trx_with_bts_name(filepath)
|
17 |
process_mrbts_data(filepath)
|
18 |
-
process_mal_with_bts_name(filepath)
|
19 |
|
20 |
UtilsVars.final_all_database = convert_dfs(
|
21 |
UtilsVars.all_db_dfs,
|
22 |
-
["GSM", "
|
23 |
)
|
|
|
1 |
+
from queries.process_gsm import combined_gsm_database
|
2 |
from queries.process_lte import process_lte_data
|
|
|
3 |
from queries.process_mrbts import process_mrbts_data
|
|
|
4 |
from queries.process_wcdma import process_wcdma_data
|
5 |
from utils.convert_to_excel import convert_dfs
|
6 |
from utils.utils_vars import UtilsVars
|
|
|
8 |
|
9 |
def process_all_tech_db(filepath: str):
|
10 |
UtilsVars.all_db_dfs.clear()
|
11 |
+
combined_gsm_database(filepath) # for gsm,mal,trx
|
12 |
process_wcdma_data(filepath)
|
13 |
+
process_lte_data(filepath), # for LTE_FDD, LTE_TDD
|
|
|
14 |
process_mrbts_data(filepath)
|
|
|
15 |
|
16 |
UtilsVars.final_all_database = convert_dfs(
|
17 |
UtilsVars.all_db_dfs,
|
18 |
+
["GSM", "MAL", "TRX", "WCDMA", "LTE_FDD", "LTE_TDD", "MRBTS"],
|
19 |
)
|
queries/process_gsm.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import pandas as pd
|
2 |
|
3 |
-
from queries.process_mal import process_mal_data
|
4 |
-
from queries.process_trx import process_trx_data
|
5 |
from utils.config_band import config_band
|
6 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
7 |
from utils.utils_vars import UtilsVars
|
@@ -154,12 +154,21 @@ def process_gsm_data(file_path: str):
|
|
154 |
# save_dataframe(df_trx, "trx")
|
155 |
# df_2g2 = save_dataframe(df_2g, "2g")
|
156 |
|
157 |
-
UtilsVars.all_db_dfs.append(df_2g)
|
158 |
# UtilsVars.final_gsm_database = convert_dfs([df_2g], ["GSM"])
|
159 |
# UtilsVars.final_gsm_database = [df_2g]
|
160 |
return df_2g
|
161 |
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def process_gsm_data_to_excel(file_path: str):
|
164 |
"""
|
165 |
Process data from the specified file path and save it to a excel file.
|
@@ -167,5 +176,5 @@ def process_gsm_data_to_excel(file_path: str):
|
|
167 |
Args:
|
168 |
file_path (str): The path to the file.
|
169 |
"""
|
170 |
-
gsm_dfs =
|
171 |
-
UtilsVars.final_gsm_database = convert_dfs(
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
from queries.process_mal import process_mal_data, process_mal_with_bts_name
|
4 |
+
from queries.process_trx import process_trx_data, process_trx_with_bts_name
|
5 |
from utils.config_band import config_band
|
6 |
from utils.convert_to_excel import convert_dfs, save_dataframe
|
7 |
from utils.utils_vars import UtilsVars
|
|
|
154 |
# save_dataframe(df_trx, "trx")
|
155 |
# df_2g2 = save_dataframe(df_2g, "2g")
|
156 |
|
157 |
+
# UtilsVars.all_db_dfs.append(df_2g)
|
158 |
# UtilsVars.final_gsm_database = convert_dfs([df_2g], ["GSM"])
|
159 |
# UtilsVars.final_gsm_database = [df_2g]
|
160 |
return df_2g
|
161 |
|
162 |
|
163 |
+
def combined_gsm_database(file_path: str):
|
164 |
+
gsm_df = process_gsm_data(file_path)
|
165 |
+
mal_df = process_mal_with_bts_name(file_path)
|
166 |
+
trx_df = process_trx_with_bts_name(file_path)
|
167 |
+
|
168 |
+
UtilsVars.all_db_dfs.extend([gsm_df, mal_df, trx_df])
|
169 |
+
return [gsm_df, mal_df, trx_df]
|
170 |
+
|
171 |
+
|
172 |
def process_gsm_data_to_excel(file_path: str):
|
173 |
"""
|
174 |
Process data from the specified file path and save it to a excel file.
|
|
|
176 |
Args:
|
177 |
file_path (str): The path to the file.
|
178 |
"""
|
179 |
+
gsm_dfs = combined_gsm_database(file_path)
|
180 |
+
UtilsVars.final_gsm_database = convert_dfs(gsm_dfs, ["GSM", "MAL", "TRX"])
|
queries/process_mal.py
CHANGED
@@ -70,7 +70,7 @@ def process_mal_with_bts_name(file_path: str):
|
|
70 |
df_mal_bts_name = pd.merge(mal_df, df_bts, on="ID_MAL", how="left")
|
71 |
df_mal_bts_name = df_mal_bts_name[MAL_BTS_COLUMNS]
|
72 |
|
73 |
-
UtilsVars.all_db_dfs.append(df_mal_bts_name)
|
74 |
return df_mal_bts_name
|
75 |
|
76 |
|
|
|
70 |
df_mal_bts_name = pd.merge(mal_df, df_bts, on="ID_MAL", how="left")
|
71 |
df_mal_bts_name = df_mal_bts_name[MAL_BTS_COLUMNS]
|
72 |
|
73 |
+
# UtilsVars.all_db_dfs.append(df_mal_bts_name)
|
74 |
return df_mal_bts_name
|
75 |
|
76 |
|
queries/process_trx.py
CHANGED
@@ -120,24 +120,12 @@ def process_trx_with_bts_name(file_path: str):
|
|
120 |
df_gsm_trx = process_brute_trx_data(file_path=file_path).copy()
|
121 |
df_gsm_trx.drop(["name"], axis=1, inplace=True)
|
122 |
|
123 |
-
# Process TRX data
|
124 |
-
# dfs = pd.read_excel(
|
125 |
-
# file_path,
|
126 |
-
# sheet_name=["BTS"],
|
127 |
-
# engine="calamine",
|
128 |
-
# skiprows=[0],
|
129 |
-
# )
|
130 |
-
# df_bts = dfs["BTS"]
|
131 |
df_bts = process_small_bts_data(file_path=file_path)
|
132 |
-
# df_bts.columns = df_bts.columns.str.replace(r"[ ]", "", regex=True)
|
133 |
-
# df_bts["code"] = df_bts["name"].str.split("_").str[0].astype(int)
|
134 |
-
# df_bts["ID_BTS"] = df_bts[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
|
135 |
-
# df_bts = df_bts[["ID_BTS", "code", "name"]]
|
136 |
|
137 |
df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
|
138 |
df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
|
139 |
|
140 |
-
UtilsVars.all_db_dfs.append(df_trx_bts_name)
|
141 |
|
142 |
return df_trx_bts_name
|
143 |
|
|
|
120 |
df_gsm_trx = process_brute_trx_data(file_path=file_path).copy()
|
121 |
df_gsm_trx.drop(["name"], axis=1, inplace=True)
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
df_bts = process_small_bts_data(file_path=file_path)
|
|
|
|
|
|
|
|
|
124 |
|
125 |
df_trx_bts_name = pd.merge(df_gsm_trx, df_bts, on="ID_BTS", how="left")
|
126 |
df_trx_bts_name = df_trx_bts_name[TRX_BTS_COLUMNS]
|
127 |
|
128 |
+
# UtilsVars.all_db_dfs.append(df_trx_bts_name)
|
129 |
|
130 |
return df_trx_bts_name
|
131 |
|