adding number of site per lac to GSM and WCDMA charts
Browse files- apps/dump_analysis.py +29 -0
- documentations/database_doc.py +5 -0
- queries/process_gsm.py +39 -7
- queries/process_wcdma.py +26 -0
- utils/utils_vars.py +2 -0
apps/dump_analysis.py
CHANGED
|
@@ -79,6 +79,21 @@ def dump_analysis_space():
|
|
| 79 |
with bts_administate_distribution_plot_col:
|
| 80 |
st.bar_chart(GsmAnalysisData.bts_administate_distribution)
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
st.markdown("***")
|
| 83 |
st.markdown(":blue[**Number of Cell per LAC**]")
|
| 84 |
number_of_cell_per_lac_data_col, number_of_cell_per_lac_plot_col = st.columns(2)
|
|
@@ -152,7 +167,21 @@ def dump_analysis_space():
|
|
| 152 |
st.bar_chart(WcdmaAnalysisData.number_of_site_per_rnc)
|
| 153 |
|
| 154 |
st.markdown("***")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
|
|
|
| 156 |
st.markdown(":green[**Number of Cell per LAC**]")
|
| 157 |
number_of_cell_per_lac_data_col, number_of_cell_per_lac_plot_col = st.columns(2)
|
| 158 |
with number_of_cell_per_lac_data_col:
|
|
|
|
| 79 |
with bts_administate_distribution_plot_col:
|
| 80 |
st.bar_chart(GsmAnalysisData.bts_administate_distribution)
|
| 81 |
|
| 82 |
+
st.markdown("***")
|
| 83 |
+
st.markdown(":blue[**Number of Site per LAC**]")
|
| 84 |
+
number_of_site_per_lac_data_col, number_of_site_per_lac_plot_col = st.columns(2)
|
| 85 |
+
with number_of_site_per_lac_data_col:
|
| 86 |
+
st.write(GsmAnalysisData.number_of_site_per_lac)
|
| 87 |
+
with number_of_site_per_lac_plot_col:
|
| 88 |
+
fig = create_lac_count_per_controller_subplots(
|
| 89 |
+
df=GsmAnalysisData.number_of_site_per_lac,
|
| 90 |
+
controller_column="BSC_NAME_ID",
|
| 91 |
+
lac_column="LAC",
|
| 92 |
+
count_column="count",
|
| 93 |
+
fig_title="Number of Site per LAC and BSC",
|
| 94 |
+
)
|
| 95 |
+
st.plotly_chart(fig)
|
| 96 |
+
|
| 97 |
st.markdown("***")
|
| 98 |
st.markdown(":blue[**Number of Cell per LAC**]")
|
| 99 |
number_of_cell_per_lac_data_col, number_of_cell_per_lac_plot_col = st.columns(2)
|
|
|
|
| 167 |
st.bar_chart(WcdmaAnalysisData.number_of_site_per_rnc)
|
| 168 |
|
| 169 |
st.markdown("***")
|
| 170 |
+
st.markdown(":green[**Number of Site per LAC**]")
|
| 171 |
+
number_of_site_per_lac_data_col, number_of_site_per_lac_plot_col = st.columns(2)
|
| 172 |
+
with number_of_site_per_lac_data_col:
|
| 173 |
+
st.write(WcdmaAnalysisData.number_of_site_per_lac)
|
| 174 |
+
with number_of_site_per_lac_plot_col:
|
| 175 |
+
fig = create_lac_count_per_controller_subplots(
|
| 176 |
+
df=WcdmaAnalysisData.number_of_site_per_lac,
|
| 177 |
+
controller_column="RNC",
|
| 178 |
+
lac_column="LAC",
|
| 179 |
+
count_column="Site_Count",
|
| 180 |
+
fig_title="Number of Site per LAC and RNC",
|
| 181 |
+
)
|
| 182 |
+
st.plotly_chart(fig)
|
| 183 |
|
| 184 |
+
st.markdown("***")
|
| 185 |
st.markdown(":green[**Number of Cell per LAC**]")
|
| 186 |
number_of_cell_per_lac_data_col, number_of_cell_per_lac_plot_col = st.columns(2)
|
| 187 |
with number_of_cell_per_lac_data_col:
|
documentations/database_doc.py
CHANGED
|
@@ -18,6 +18,7 @@ The app requires the following sheets to be present in the uploaded file:
|
|
| 18 |
- BTS
|
| 19 |
- BCF
|
| 20 |
- TRX
|
|
|
|
| 21 |
2. **3G :**
|
| 22 |
- WCEL
|
| 23 |
- WBTS
|
|
@@ -35,6 +36,10 @@ The app requires the following sheets to be present in the uploaded file:
|
|
| 35 |
- ADJW
|
| 36 |
- BTS
|
| 37 |
- WCEL
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
Please ensure that these sheets are present in the uploaded file to avoid any errors.
|
| 40 |
|
|
|
|
| 18 |
- BTS
|
| 19 |
- BCF
|
| 20 |
- TRX
|
| 21 |
+
- MAL
|
| 22 |
2. **3G :**
|
| 23 |
- WCEL
|
| 24 |
- WBTS
|
|
|
|
| 36 |
- ADJW
|
| 37 |
- BTS
|
| 38 |
- WCEL
|
| 39 |
+
5. **MRBTS :**
|
| 40 |
+
- MRBTS
|
| 41 |
+
6. **INVUNIT :**
|
| 42 |
+
- INVUNIT
|
| 43 |
|
| 44 |
Please ensure that these sheets are present in the uploaded file to avoid any errors.
|
| 45 |
|
queries/process_gsm.py
CHANGED
|
@@ -232,6 +232,14 @@ def gsm_analaysis(file_path: str):
|
|
| 232 |
df_site_per_bsc = gsm_df[["BSC", "code"]]
|
| 233 |
df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
|
| 234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
GsmAnalysisData.total_number_of_bsc = len(gsm_df["BSC"].unique())
|
| 236 |
GsmAnalysisData.total_number_of_cell = len(gsm_df["ID_BTS"].unique())
|
| 237 |
GsmAnalysisData.number_of_site = len(gsm_df["site_name"].unique())
|
|
@@ -250,8 +258,10 @@ def gsm_analaysis(file_path: str):
|
|
| 250 |
# .rename(columns={"index": "value", 0: "count"})
|
| 251 |
# )
|
| 252 |
|
|
|
|
| 253 |
GsmAnalysisData.number_of_trx_per_bsc = trx_df["BSC"].value_counts()
|
| 254 |
-
|
|
|
|
| 255 |
GsmAnalysisData.number_of_cell_per_lac = (
|
| 256 |
gsm_df.groupby(["BSC", "locationAreaIdLAC"]).size().reset_index(name="count")
|
| 257 |
)
|
|
@@ -281,9 +291,31 @@ def gsm_analaysis(file_path: str):
|
|
| 281 |
["BSC_NAME_ID", "LAC", "count"]
|
| 282 |
]
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
df_site_per_bsc = gsm_df[["BSC", "code"]]
|
| 233 |
df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
|
| 234 |
|
| 235 |
+
df_site_per_lac = gsm_df[["BSC", "locationAreaIdLAC", "code"]]
|
| 236 |
+
df_site_per_lac["code_lac"] = (
|
| 237 |
+
df_site_per_lac["code"].astype(str)
|
| 238 |
+
+ "_"
|
| 239 |
+
+ df_site_per_lac["locationAreaIdLAC"].astype(str)
|
| 240 |
+
)
|
| 241 |
+
df_site_per_lac = df_site_per_lac.drop_duplicates(subset=["code_lac"], keep="first")
|
| 242 |
+
|
| 243 |
GsmAnalysisData.total_number_of_bsc = len(gsm_df["BSC"].unique())
|
| 244 |
GsmAnalysisData.total_number_of_cell = len(gsm_df["ID_BTS"].unique())
|
| 245 |
GsmAnalysisData.number_of_site = len(gsm_df["site_name"].unique())
|
|
|
|
| 258 |
# .rename(columns={"index": "value", 0: "count"})
|
| 259 |
# )
|
| 260 |
|
| 261 |
+
######################################## Number of trx per bsc
|
| 262 |
GsmAnalysisData.number_of_trx_per_bsc = trx_df["BSC"].value_counts()
|
| 263 |
+
|
| 264 |
+
######################################## Number of cell per lac
|
| 265 |
GsmAnalysisData.number_of_cell_per_lac = (
|
| 266 |
gsm_df.groupby(["BSC", "locationAreaIdLAC"]).size().reset_index(name="count")
|
| 267 |
)
|
|
|
|
| 291 |
["BSC_NAME_ID", "LAC", "count"]
|
| 292 |
]
|
| 293 |
|
| 294 |
+
######################################## Number of site per LA
|
| 295 |
+
GsmAnalysisData.number_of_site_per_lac = (
|
| 296 |
+
df_site_per_lac.groupby(["BSC", "locationAreaIdLAC"])
|
| 297 |
+
.size()
|
| 298 |
+
.reset_index(name="count")
|
| 299 |
+
)
|
| 300 |
+
# Get BSC name
|
| 301 |
+
GsmAnalysisData.number_of_site_per_lac["BSC_NAME"] = (
|
| 302 |
+
GsmAnalysisData.number_of_site_per_lac["BSC"].map(UtilsVars.bsc_name).fillna("")
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# Rename columns
|
| 306 |
+
GsmAnalysisData.number_of_site_per_lac.rename(
|
| 307 |
+
columns={"BSC": "BSC", "locationAreaIdLAC": "LAC", "count": "count"},
|
| 308 |
+
inplace=True,
|
| 309 |
+
)
|
| 310 |
+
# Add "BSC_" and "LAC_" prefix to LAC column
|
| 311 |
+
GsmAnalysisData.number_of_site_per_lac["LAC"] = (
|
| 312 |
+
"LAC_" + GsmAnalysisData.number_of_site_per_lac["LAC"].astype(str)
|
| 313 |
+
)
|
| 314 |
+
GsmAnalysisData.number_of_site_per_lac["BSC_NAME_ID"] = (
|
| 315 |
+
GsmAnalysisData.number_of_site_per_lac[["BSC_NAME", "BSC"]]
|
| 316 |
+
.astype(str)
|
| 317 |
+
.apply("_".join, axis=1)
|
| 318 |
+
)
|
| 319 |
+
GsmAnalysisData.number_of_site_per_lac = GsmAnalysisData.number_of_site_per_lac[
|
| 320 |
+
["BSC_NAME_ID", "LAC", "count"]
|
| 321 |
+
]
|
queries/process_wcdma.py
CHANGED
|
@@ -244,6 +244,12 @@ def wcdma_analaysis(
|
|
| 244 |
df_site_per_rnc = wcdma_df[["RNC", "code"]]
|
| 245 |
df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
WcdmaAnalysisData.total_number_of_rnc = wcdma_df["RNC"].nunique()
|
| 248 |
WcdmaAnalysisData.total_number_of_wcel = wcdma_df["ID_WCEL"].nunique()
|
| 249 |
WcdmaAnalysisData.number_of_site = len(wcdma_df["site_name"].unique())
|
|
@@ -273,3 +279,23 @@ def wcdma_analaysis(
|
|
| 273 |
WcdmaAnalysisData.number_of_cell_per_lac["LAC"] = (
|
| 274 |
"LAC_" + WcdmaAnalysisData.number_of_cell_per_lac["LAC"].astype(str)
|
| 275 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
df_site_per_rnc = wcdma_df[["RNC", "code"]]
|
| 245 |
df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
|
| 246 |
|
| 247 |
+
df_site_per_lac = wcdma_df[["RNC", "LAC", "code"]]
|
| 248 |
+
df_site_per_lac["code_lac"] = (
|
| 249 |
+
df_site_per_lac["code"].astype(str) + "_" + df_site_per_lac["LAC"].astype(str)
|
| 250 |
+
)
|
| 251 |
+
df_site_per_lac = df_site_per_lac.drop_duplicates(subset=["code_lac"], keep="first")
|
| 252 |
+
|
| 253 |
WcdmaAnalysisData.total_number_of_rnc = wcdma_df["RNC"].nunique()
|
| 254 |
WcdmaAnalysisData.total_number_of_wcel = wcdma_df["ID_WCEL"].nunique()
|
| 255 |
WcdmaAnalysisData.number_of_site = len(wcdma_df["site_name"].unique())
|
|
|
|
| 279 |
WcdmaAnalysisData.number_of_cell_per_lac["LAC"] = (
|
| 280 |
"LAC_" + WcdmaAnalysisData.number_of_cell_per_lac["LAC"].astype(str)
|
| 281 |
)
|
| 282 |
+
|
| 283 |
+
##################### Number of site per LAC
|
| 284 |
+
WcdmaAnalysisData.number_of_site_per_lac = (
|
| 285 |
+
df_site_per_lac.groupby(["RNC", "LAC"]).size().reset_index(name="count")
|
| 286 |
+
)
|
| 287 |
+
# Rename columns
|
| 288 |
+
WcdmaAnalysisData.number_of_site_per_lac = (
|
| 289 |
+
WcdmaAnalysisData.number_of_site_per_lac.rename(
|
| 290 |
+
columns={"RNC": "RNC", "LAC": "LAC", "count": "Site_Count"}
|
| 291 |
+
)
|
| 292 |
+
)
|
| 293 |
+
# Add "RNC_" and "LAC_" prefix
|
| 294 |
+
WcdmaAnalysisData.number_of_site_per_lac["RNC"] = (
|
| 295 |
+
"RNC_" + WcdmaAnalysisData.number_of_site_per_lac["RNC"].astype(str)
|
| 296 |
+
)
|
| 297 |
+
WcdmaAnalysisData.number_of_site_per_lac["LAC"] = (
|
| 298 |
+
"LAC_" + WcdmaAnalysisData.number_of_site_per_lac["LAC"].astype(str)
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
print(WcdmaAnalysisData.number_of_site_per_lac)
|
utils/utils_vars.py
CHANGED
|
@@ -138,6 +138,7 @@ class GsmAnalysisData:
|
|
| 138 |
trx_administate_distribution = pd.DataFrame()
|
| 139 |
number_of_trx_per_bsc = pd.DataFrame()
|
| 140 |
number_of_cell_per_lac = pd.DataFrame()
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
class WcdmaAnalysisData:
|
|
@@ -151,6 +152,7 @@ class WcdmaAnalysisData:
|
|
| 151 |
wcel_administate_distribution = pd.DataFrame()
|
| 152 |
psc_distribution = pd.DataFrame()
|
| 153 |
number_of_cell_per_lac = pd.DataFrame()
|
|
|
|
| 154 |
|
| 155 |
|
| 156 |
class LteFddAnalysisData:
|
|
|
|
| 138 |
trx_administate_distribution = pd.DataFrame()
|
| 139 |
number_of_trx_per_bsc = pd.DataFrame()
|
| 140 |
number_of_cell_per_lac = pd.DataFrame()
|
| 141 |
+
number_of_site_per_lac = pd.DataFrame()
|
| 142 |
|
| 143 |
|
| 144 |
class WcdmaAnalysisData:
|
|
|
|
| 152 |
wcel_administate_distribution = pd.DataFrame()
|
| 153 |
psc_distribution = pd.DataFrame()
|
| 154 |
number_of_cell_per_lac = pd.DataFrame()
|
| 155 |
+
number_of_site_per_lac = pd.DataFrame()
|
| 156 |
|
| 157 |
|
| 158 |
class LteFddAnalysisData:
|