GSM CAPACITY initial commit
Browse files- apps/kpi_analysis/gsm_capacity.py +118 -0
- assets/gsm_capacity.png +0 -0
- process_kpi/gsm_kpi_requirements.md +47 -0
- process_kpi/process_gsm_capacity.py +408 -0
apps/kpi_analysis/gsm_capacity.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from process_kpi.process_gsm_capacity import GsmCapacity, analyze_gsm_data
|
6 |
+
from utils.convert_to_excel import ( # Import convert_dfs from the appropriate module
|
7 |
+
convert_dfs,
|
8 |
+
convert_gsm_dfs,
|
9 |
+
)
|
10 |
+
|
11 |
+
st.title(" 📊 GSM Capacity Analysis")
|
12 |
+
doc_col, image_col = st.columns(2)
|
13 |
+
|
14 |
+
with doc_col:
|
15 |
+
st.write(
|
16 |
+
"""
|
17 |
+
The report should be run with a minimum of 3 days of data.
|
18 |
+
- Daily Aggregated
|
19 |
+
- Site level
|
20 |
+
- Exported in CSV format.
|
21 |
+
"""
|
22 |
+
)
|
23 |
+
|
24 |
+
with image_col:
|
25 |
+
st.image("./assets/gsm_capacity.png", width=250)
|
26 |
+
|
27 |
+
file1, file2, file3 = st.columns(3)
|
28 |
+
|
29 |
+
with file1:
|
30 |
+
uploaded_dump = st.file_uploader("Upload Dump file in xlsb format", type="xlsb")
|
31 |
+
with file2:
|
32 |
+
uploaded_daily_report = st.file_uploader(
|
33 |
+
"Upload Daily Report in CSV format", type="csv"
|
34 |
+
)
|
35 |
+
with file3:
|
36 |
+
uploaded_bh_report = st.file_uploader(
|
37 |
+
"Upload Busy Hour Report in CSV format", type="csv"
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
col1, col2 = st.columns(2)
|
42 |
+
|
43 |
+
threshold_col1, threshold_col2 = st.columns(2)
|
44 |
+
threshold_col3, threshold_col4 = st.columns(2)
|
45 |
+
|
46 |
+
if (
|
47 |
+
uploaded_dump is not None
|
48 |
+
and uploaded_daily_report is not None
|
49 |
+
and uploaded_bh_report is not None
|
50 |
+
):
|
51 |
+
# WbtsCapacity.final_results = None
|
52 |
+
with col1:
|
53 |
+
number_of_kpi_days = st.number_input(
|
54 |
+
"Number of days for analysis",
|
55 |
+
min_value=3,
|
56 |
+
max_value=30,
|
57 |
+
value=7,
|
58 |
+
)
|
59 |
+
with col2:
|
60 |
+
number_of_threshold_days = st.number_input(
|
61 |
+
"Number of days for threshold",
|
62 |
+
min_value=1,
|
63 |
+
max_value=30,
|
64 |
+
value=3,
|
65 |
+
)
|
66 |
+
|
67 |
+
with threshold_col1:
|
68 |
+
availability_threshold = st.number_input(
|
69 |
+
"Availability Threshold", min_value=1, max_value=100, value=95
|
70 |
+
)
|
71 |
+
with threshold_col2:
|
72 |
+
tch_abis_fails_threshold = st.number_input(
|
73 |
+
"TCH ABIS Fails Threshold", min_value=0, value=10
|
74 |
+
)
|
75 |
+
with threshold_col3:
|
76 |
+
sddch_blocking_threshold = st.number_input(
|
77 |
+
"SDDCH Blocking Threshold", min_value=0.1, value=0.5
|
78 |
+
)
|
79 |
+
with threshold_col4:
|
80 |
+
tch_blocking_threshold = st.number_input(
|
81 |
+
"TCH Blocking Threshold", min_value=0.1, value=0.5
|
82 |
+
)
|
83 |
+
|
84 |
+
if st.button("Analyze Data", type="primary"):
|
85 |
+
dfs = analyze_gsm_data(
|
86 |
+
dump_path=uploaded_dump,
|
87 |
+
daily_report_path=uploaded_daily_report,
|
88 |
+
bh_report_path=uploaded_bh_report,
|
89 |
+
number_of_kpi_days=number_of_kpi_days,
|
90 |
+
number_of_threshold_days=number_of_threshold_days,
|
91 |
+
availability_threshold=availability_threshold,
|
92 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
93 |
+
sddch_blocking_threshold=sddch_blocking_threshold,
|
94 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
95 |
+
)
|
96 |
+
|
97 |
+
if dfs is not None:
|
98 |
+
gsm_analysis_df = dfs[0]
|
99 |
+
bh_kpi_df = dfs[1]
|
100 |
+
GsmCapacity.final_results = convert_gsm_dfs(
|
101 |
+
[gsm_analysis_df, bh_kpi_df], ["GSM_Analysis", "BH_KPI_Analysis"]
|
102 |
+
)
|
103 |
+
|
104 |
+
# GsmCapacity.final_results = convert_gsm_dfs(
|
105 |
+
# [gsm_analysis_df], ["GSM_Analysis"]
|
106 |
+
# )
|
107 |
+
|
108 |
+
if GsmCapacity.final_results is not None:
|
109 |
+
st.download_button(
|
110 |
+
on_click="ignore",
|
111 |
+
type="primary",
|
112 |
+
label="Download the Analysis Report",
|
113 |
+
data=GsmCapacity.final_results,
|
114 |
+
file_name="GSM_Analysis_Report.xlsx",
|
115 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
116 |
+
)
|
117 |
+
|
118 |
+
st.write(gsm_analysis_df)
|
assets/gsm_capacity.png
ADDED
![]() |
process_kpi/gsm_kpi_requirements.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Required Input
|
2 |
+
|
3 |
+
- BH report
|
4 |
+
- Daily Report
|
5 |
+
- Dump file (2G dump)
|
6 |
+
- Number of last day for the analysis
|
7 |
+
- Number of days for blocking
|
8 |
+
- Sddch blocking threshold
|
9 |
+
- TCH blocking threshold
|
10 |
+
- Availability threshold
|
11 |
+
- TCH abis fails threshold
|
12 |
+
|
13 |
+
Analyse
|
14 |
+
|
15 |
+
DUMP
|
16 |
+
|
17 |
+
- Check that mandatory sheet exists in the dump
|
18 |
+
- Parse 2G databases
|
19 |
+
- Get number of TRX,TCH,SDCCH,amrSegLoadDepTchRateLower,amrSegLoadDepTchRateUpper from databases
|
20 |
+
- Add "GPRS" colomn equal to (dedicatedGPRScapacity * number_tch_per_cell)/100
|
21 |
+
- Get "Coef HF rate" by mapping "amrSegLoadDepTchRateLower" to 2G analysis_utility "hf_rate_coef" dict
|
22 |
+
- "TCH Actual HR%" equal to "number of TCH" multiplyed by "Coef HF rate"
|
23 |
+
- Get "Offered Traffic" by mapping approximate "TCH Actual HR%" to 2G analysis_utility "erlangB" dict
|
24 |
+
|
25 |
+
BH DATA
|
26 |
+
|
27 |
+
- Pivot KPI in BH report
|
28 |
+
- Calculate Average and Max of Traffic
|
29 |
+
- Average of TCH blocking
|
30 |
+
- Average of SDCCH blocking
|
31 |
+
- Count number of Days with TCH blocking exceeded TCH blocking threshold
|
32 |
+
- Count number of Days with SDCCH blocking exceeded Sddch blocking threshold
|
33 |
+
- Count number of Days with Availability below Availability threshold
|
34 |
+
- "TCH UTILIZATION (@Max Traffic)" equal to "Max_Trafic" divided by "offered Traffic"
|
35 |
+
- Add "ErlabngB_value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
|
36 |
+
- Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
|
37 |
+
- "Target HR CHs" equal to "Target FR CHs" * 2
|
38 |
+
- Get "Signal" and "GPRS" value from databases
|
39 |
+
- Target TCHs equal to Target HR CHs + Signal + GPRS + SDCCH
|
40 |
+
- "Target TRXs" equal to roundup(Target TCHs/8)
|
41 |
+
- "# of required TRXs" equal to difference between "Target TRXs" and "number of TRX"
|
42 |
+
|
43 |
+
Daily DATA
|
44 |
+
|
45 |
+
- Pivot KPI in Daily Report
|
46 |
+
- Count number of Days with Availability below Availability threshold
|
47 |
+
- Count number of Days with abis fails exceeded TCH abis fails threshold
|
process_kpi/process_gsm_capacity.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
from queries.process_gsm import combined_gsm_database
|
5 |
+
from utils.check_sheet_exist import execute_checks_sheets_exist
|
6 |
+
from utils.convert_to_excel import convert_dfs, save_dataframe
|
7 |
+
from utils.kpi_analysis_utils import (
|
8 |
+
GsmAnalysis,
|
9 |
+
create_daily_date,
|
10 |
+
create_dfs_per_kpi,
|
11 |
+
create_hourly_date,
|
12 |
+
kpi_naming_cleaning,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class GsmCapacity:
|
17 |
+
final_results = None
|
18 |
+
|
19 |
+
|
20 |
+
GSM_COLUMNS = [
|
21 |
+
"ID_BTS",
|
22 |
+
"site_name",
|
23 |
+
"name",
|
24 |
+
"BSC",
|
25 |
+
"BCF",
|
26 |
+
"BTS",
|
27 |
+
"code",
|
28 |
+
"Region",
|
29 |
+
"adminState",
|
30 |
+
"frequencyBandInUse",
|
31 |
+
"amrSegLoadDepTchRateLower",
|
32 |
+
"amrSegLoadDepTchRateUpper",
|
33 |
+
"dedicatedGPRScapacity",
|
34 |
+
"defaultGPRScapacity",
|
35 |
+
"cellId",
|
36 |
+
"band",
|
37 |
+
"site_config_band",
|
38 |
+
"trxRfPower",
|
39 |
+
"BCCH",
|
40 |
+
"number_trx_per_cell",
|
41 |
+
"number_trx_per_bcf",
|
42 |
+
"TRX_TCH",
|
43 |
+
"MAL_TCH",
|
44 |
+
]
|
45 |
+
|
46 |
+
TRX_COLUMNS = [
|
47 |
+
"ID_BTS",
|
48 |
+
"number_tch_per_cell",
|
49 |
+
"number_sd_per_cell",
|
50 |
+
"number_bcch_per_cell",
|
51 |
+
"number_ccch_per_cell",
|
52 |
+
"number_cbc_per_cell",
|
53 |
+
"number_total_channels_per_cell",
|
54 |
+
"number_signals_per_cell",
|
55 |
+
]
|
56 |
+
|
57 |
+
KPI_COLUMNS = [
|
58 |
+
"date",
|
59 |
+
"BTS_name",
|
60 |
+
"TCH_availability_ratio",
|
61 |
+
"2G_Carried_Traffic",
|
62 |
+
"TCH_call_blocking",
|
63 |
+
"TCH_ABIS_FAIL_CALL_c001084",
|
64 |
+
"SDCCH_real_blocking",
|
65 |
+
]
|
66 |
+
BH_COLUMNS_FOR_CAPACITY = [
|
67 |
+
"Max_Traffic BH",
|
68 |
+
"Avg_Traffic BH",
|
69 |
+
"Max_tch_call_blocking BH",
|
70 |
+
"Avg_tch_call_blocking BH",
|
71 |
+
"number_of_days_with_tch_blocking_exceeded",
|
72 |
+
"Max_sdcch_real_blocking BH",
|
73 |
+
"Avg_sdcch_real_blocking BH",
|
74 |
+
"number_of_days_with_sdcch_blocking_exceeded",
|
75 |
+
]
|
76 |
+
|
77 |
+
|
78 |
+
def bh_tch_call_blocking_analysis(
|
79 |
+
df: pd.DataFrame,
|
80 |
+
number_of_kpi_days: int,
|
81 |
+
tch_blocking_threshold: int,
|
82 |
+
number_of_threshold_days: int,
|
83 |
+
) -> pd.DataFrame:
|
84 |
+
|
85 |
+
result_df = df.copy()
|
86 |
+
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
87 |
+
# last_days_df = last_days_df.fillna(0)
|
88 |
+
|
89 |
+
result_df["Avg_tch_call_blocking BH"] = last_days_df.mean(axis=1).round(2)
|
90 |
+
result_df["Max_tch_call_blocking BH"] = last_days_df.max(axis=1)
|
91 |
+
# Count the number of days above threshold
|
92 |
+
result_df["number_of_days_with_tch_blocking_exceeded"] = last_days_df.apply(
|
93 |
+
lambda row: sum(1 for x in row if x >= tch_blocking_threshold), axis=1
|
94 |
+
)
|
95 |
+
return result_df
|
96 |
+
|
97 |
+
|
98 |
+
def bh_sdcch_call_blocking_analysis(
|
99 |
+
df: pd.DataFrame,
|
100 |
+
number_of_kpi_days: int,
|
101 |
+
sdcch_blocking_threshold: int,
|
102 |
+
number_of_threshold_days: int,
|
103 |
+
) -> pd.DataFrame:
|
104 |
+
|
105 |
+
result_df = df.copy()
|
106 |
+
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
107 |
+
# last_days_df = last_days_df.fillna(0)
|
108 |
+
|
109 |
+
result_df["Avg_sdcch_real_blocking BH"] = last_days_df.mean(axis=1).round(2)
|
110 |
+
result_df["Max_sdcch_real_blocking BH"] = last_days_df.max(axis=1)
|
111 |
+
# Count the number of days above threshold
|
112 |
+
result_df["number_of_days_with_sdcch_blocking_exceeded"] = last_days_df.apply(
|
113 |
+
lambda row: sum(1 for x in row if x >= sdcch_blocking_threshold), axis=1
|
114 |
+
)
|
115 |
+
return result_df
|
116 |
+
|
117 |
+
|
118 |
+
def bh_traffic_analysis(
|
119 |
+
df: pd.DataFrame,
|
120 |
+
number_of_kpi_days: int,
|
121 |
+
) -> pd.DataFrame:
|
122 |
+
|
123 |
+
result_df = df.copy()
|
124 |
+
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
|
125 |
+
# last_days_df = last_days_df.fillna(0)
|
126 |
+
|
127 |
+
result_df["Avg_Traffic BH"] = last_days_df.mean(axis=1).round(2)
|
128 |
+
result_df["Max_Traffic BH"] = last_days_df.max(axis=1)
|
129 |
+
return result_df
|
130 |
+
|
131 |
+
|
132 |
+
def bh_dfs_per_kpi(
|
133 |
+
df: pd.DataFrame,
|
134 |
+
number_of_kpi_days: int = 7,
|
135 |
+
tch_blocking_threshold: int = 0.50,
|
136 |
+
sdcch_blocking_threshold: int = 0.50,
|
137 |
+
number_of_threshold_days: int = 3,
|
138 |
+
) -> pd.DataFrame:
|
139 |
+
"""
|
140 |
+
Create pivoted DataFrames for each KPI and perform analysis.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
df: DataFrame containing KPI data
|
144 |
+
number_of_kpi_days: Number of days to analyze
|
145 |
+
threshold: Utilization threshold percentage for flagging
|
146 |
+
number_of_threshold_days: Minimum days above threshold to flag for upgrade
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
DataFrame with combined analysis results
|
150 |
+
"""
|
151 |
+
pivoted_kpi_dfs = {}
|
152 |
+
|
153 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
154 |
+
df=df,
|
155 |
+
pivot_date_column="date",
|
156 |
+
pivot_name_column="BTS_name",
|
157 |
+
kpi_columns_from=2,
|
158 |
+
)
|
159 |
+
|
160 |
+
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
|
161 |
+
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
|
162 |
+
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
|
163 |
+
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
164 |
+
|
165 |
+
# ANALISYS
|
166 |
+
|
167 |
+
tch_call_blocking_df = bh_tch_call_blocking_analysis(
|
168 |
+
df=tch_call_blocking_df,
|
169 |
+
number_of_kpi_days=number_of_kpi_days,
|
170 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
171 |
+
number_of_threshold_days=number_of_threshold_days,
|
172 |
+
)
|
173 |
+
|
174 |
+
sdcch_real_blocking_df = bh_sdcch_call_blocking_analysis(
|
175 |
+
df=sdcch_real_blocking_df,
|
176 |
+
number_of_kpi_days=number_of_kpi_days,
|
177 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
178 |
+
number_of_threshold_days=number_of_threshold_days,
|
179 |
+
)
|
180 |
+
|
181 |
+
Carried_Traffic_df = bh_traffic_analysis(
|
182 |
+
df=Carried_Traffic_df,
|
183 |
+
number_of_kpi_days=number_of_kpi_days,
|
184 |
+
)
|
185 |
+
|
186 |
+
# Carried_Traffic_df["Max_Traffic BH"] = Carried_Traffic_df.max(axis=1)
|
187 |
+
# Carried_Traffic_df["Avg_Traffic BH"] = Carried_Traffic_df.mean(axis=1)
|
188 |
+
|
189 |
+
bh_kpi_df = pd.concat(
|
190 |
+
[
|
191 |
+
tch_availability_ratio_df,
|
192 |
+
Carried_Traffic_df,
|
193 |
+
tch_call_blocking_df,
|
194 |
+
sdcch_real_blocking_df,
|
195 |
+
],
|
196 |
+
axis=1,
|
197 |
+
)
|
198 |
+
# print(Carried_Traffic_df)
|
199 |
+
|
200 |
+
return bh_kpi_df
|
201 |
+
|
202 |
+
|
203 |
+
def analyse_bh_data(
|
204 |
+
bh_report_path: str,
|
205 |
+
number_of_kpi_days: int,
|
206 |
+
tch_blocking_threshold: int,
|
207 |
+
sdcch_blocking_threshold: int,
|
208 |
+
number_of_threshold_days: int,
|
209 |
+
) -> pd.DataFrame:
|
210 |
+
df = pd.read_csv(bh_report_path, delimiter=";")
|
211 |
+
df = kpi_naming_cleaning(df)
|
212 |
+
df = create_hourly_date(df)
|
213 |
+
df = df[KPI_COLUMNS]
|
214 |
+
df = bh_dfs_per_kpi(
|
215 |
+
df=df,
|
216 |
+
number_of_kpi_days=number_of_kpi_days,
|
217 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
218 |
+
sdcch_blocking_threshold=sdcch_blocking_threshold,
|
219 |
+
number_of_threshold_days=number_of_threshold_days,
|
220 |
+
)
|
221 |
+
|
222 |
+
bh_df_for_capacity = df.copy()
|
223 |
+
bh_df_for_capacity = bh_df_for_capacity[BH_COLUMNS_FOR_CAPACITY]
|
224 |
+
bh_df_for_capacity = bh_df_for_capacity.reset_index()
|
225 |
+
|
226 |
+
# If columns have multiple levels (MultiIndex), flatten them
|
227 |
+
if isinstance(bh_df_for_capacity.columns, pd.MultiIndex):
|
228 |
+
bh_df_for_capacity.columns = [
|
229 |
+
"_".join([str(el) for el in col if el])
|
230 |
+
for col in bh_df_for_capacity.columns.values
|
231 |
+
]
|
232 |
+
# bh_df_for_capacity = bh_df_for_capacity.reset_index()
|
233 |
+
|
234 |
+
# rename Bts_name to name
|
235 |
+
bh_df_for_capacity = bh_df_for_capacity.rename(columns={"BTS_name": "name"})
|
236 |
+
|
237 |
+
return [bh_df_for_capacity, df]
|
238 |
+
|
239 |
+
|
240 |
+
def daily_dfs_per_kpi(
|
241 |
+
df: pd.DataFrame,
|
242 |
+
number_of_kpi_days: int = 7,
|
243 |
+
availability_threshold: int = 95,
|
244 |
+
number_of_threshold_days: int = 3,
|
245 |
+
tch_abis_fails_threshold: int = 10,
|
246 |
+
) -> pd.DataFrame:
|
247 |
+
"""
|
248 |
+
Create pivoted DataFrames for each KPI and perform analysis.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
df: DataFrame containing KPI data
|
252 |
+
number_of_kpi_days: Number of days to analyze
|
253 |
+
threshold: Utilization threshold percentage for flagging
|
254 |
+
number_of_threshold_days: Minimum days above threshold to flag for upgrade
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
DataFrame with combined analysis results
|
258 |
+
"""
|
259 |
+
pivoted_kpi_dfs = {}
|
260 |
+
|
261 |
+
pivoted_kpi_dfs = create_dfs_per_kpi(
|
262 |
+
df=df,
|
263 |
+
pivot_date_column="date",
|
264 |
+
pivot_name_column="BTS_name",
|
265 |
+
kpi_columns_from=2,
|
266 |
+
)
|
267 |
+
|
268 |
+
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
|
269 |
+
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
|
270 |
+
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
|
271 |
+
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
|
272 |
+
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
|
273 |
+
|
274 |
+
|
275 |
+
def analyse_daily_data(
|
276 |
+
daily_report_path: str,
|
277 |
+
number_of_kpi_days: int,
|
278 |
+
tch_abis_fails_threshold: int,
|
279 |
+
availability_threshold: int,
|
280 |
+
number_of_threshold_days: int,
|
281 |
+
) -> pd.DataFrame:
|
282 |
+
df = pd.read_csv(daily_report_path, delimiter=";")
|
283 |
+
df = kpi_naming_cleaning(df)
|
284 |
+
df = create_daily_date(df)
|
285 |
+
df = df[KPI_COLUMNS]
|
286 |
+
df = daily_dfs_per_kpi(
|
287 |
+
df=df,
|
288 |
+
number_of_kpi_days=number_of_kpi_days,
|
289 |
+
availability_threshold=availability_threshold,
|
290 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
291 |
+
number_of_threshold_days=number_of_threshold_days,
|
292 |
+
)
|
293 |
+
# print(df)
|
294 |
+
|
295 |
+
|
296 |
+
def get_gsm_databases(dump_path: str) -> pd.DataFrame:
|
297 |
+
|
298 |
+
dfs = combined_gsm_database(dump_path)
|
299 |
+
bts_df: pd.DataFrame = dfs[0]
|
300 |
+
trx_df: pd.DataFrame = dfs[2]
|
301 |
+
|
302 |
+
# Clean GSM df
|
303 |
+
bts_df = bts_df[GSM_COLUMNS]
|
304 |
+
trx_df = trx_df[TRX_COLUMNS]
|
305 |
+
|
306 |
+
# Remove duplicate in TRX df
|
307 |
+
trx_df = trx_df.drop_duplicates(subset=["ID_BTS"])
|
308 |
+
|
309 |
+
gsm_df = pd.merge(bts_df, trx_df, on="ID_BTS", how="left")
|
310 |
+
|
311 |
+
# add hf_rate_coef
|
312 |
+
gsm_df["hf_rate_coef"] = gsm_df["amrSegLoadDepTchRateLower"].map(
|
313 |
+
GsmAnalysis.hf_rate_coef
|
314 |
+
)
|
315 |
+
# Add "GPRS" colomn equal to (dedicatedGPRScapacity * number_tch_per_cell)/100
|
316 |
+
gsm_df["GPRS"] = (
|
317 |
+
gsm_df["dedicatedGPRScapacity"] * gsm_df["number_tch_per_cell"]
|
318 |
+
) / 100
|
319 |
+
|
320 |
+
# "TCH Actual HR%" equal to "number of TCH" multiplyed by "Coef HF rate"
|
321 |
+
gsm_df["TCH Actual HR%"] = gsm_df["number_tch_per_cell"] * gsm_df["hf_rate_coef"]
|
322 |
+
|
323 |
+
# Remove empty rows
|
324 |
+
gsm_df = gsm_df.dropna(subset=["TCH Actual HR%"])
|
325 |
+
|
326 |
+
# Get "Offered Traffic BH" by mapping approximate "TCH Actual HR%" to 2G analysis_utility "erlangB" dict
|
327 |
+
gsm_df["Offered Traffic BH"] = gsm_df["TCH Actual HR%"].apply(
|
328 |
+
lambda x: GsmAnalysis.erlangB_table.get(int(x), 0)
|
329 |
+
)
|
330 |
+
|
331 |
+
# save_dataframe(gsm_df, "GSM")
|
332 |
+
return gsm_df
|
333 |
+
|
334 |
+
|
335 |
+
def analyze_gsm_data(
|
336 |
+
dump_path: str,
|
337 |
+
daily_report_path: str,
|
338 |
+
bh_report_path: str,
|
339 |
+
number_of_kpi_days: int,
|
340 |
+
number_of_threshold_days: int,
|
341 |
+
availability_threshold: int,
|
342 |
+
tch_abis_fails_threshold: int,
|
343 |
+
sddch_blocking_threshold: float,
|
344 |
+
tch_blocking_threshold: float,
|
345 |
+
):
|
346 |
+
# print("Analyzing data...")
|
347 |
+
# print(f"Number of days: {number_of_kpi_days}")
|
348 |
+
# print(f"availability_threshold: {availability_threshold}")
|
349 |
+
|
350 |
+
analyse_daily_data(
|
351 |
+
daily_report_path=daily_report_path,
|
352 |
+
number_of_kpi_days=number_of_kpi_days,
|
353 |
+
availability_threshold=availability_threshold,
|
354 |
+
tch_abis_fails_threshold=tch_abis_fails_threshold,
|
355 |
+
number_of_threshold_days=number_of_threshold_days,
|
356 |
+
)
|
357 |
+
|
358 |
+
gsm_database_df: pd.DataFrame = get_gsm_databases(dump_path)
|
359 |
+
|
360 |
+
bh_kpi_dfs = analyse_bh_data(
|
361 |
+
bh_report_path=bh_report_path,
|
362 |
+
number_of_kpi_days=number_of_kpi_days,
|
363 |
+
tch_blocking_threshold=tch_blocking_threshold,
|
364 |
+
sdcch_blocking_threshold=sddch_blocking_threshold,
|
365 |
+
number_of_threshold_days=number_of_threshold_days,
|
366 |
+
)
|
367 |
+
|
368 |
+
bh_kpi_df = bh_kpi_dfs[0]
|
369 |
+
bh_kpi_full_df = bh_kpi_dfs[1]
|
370 |
+
|
371 |
+
gsm_analysis_df = gsm_database_df.merge(bh_kpi_df, on="name", how="left")
|
372 |
+
|
373 |
+
# "TCH UTILIZATION (@Max Traffic)" equal to "(Max_Trafic" divided by "Offered Traffic BH)*100"
|
374 |
+
gsm_analysis_df["TCH UTILIZATION (@Max Traffic)"] = (
|
375 |
+
gsm_analysis_df["Max_Traffic BH"] / gsm_analysis_df["Offered Traffic BH"]
|
376 |
+
) * 100
|
377 |
+
|
378 |
+
# Add "ERLANGB value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
|
379 |
+
gsm_analysis_df["ErlabngB_value"] = gsm_analysis_df["Max_Traffic BH"] / (
|
380 |
+
1 - (gsm_analysis_df["Max_tch_call_blocking BH"] / 200)
|
381 |
+
)
|
382 |
+
|
383 |
+
# - Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
|
384 |
+
gsm_analysis_df["Target FR CHs"] = gsm_analysis_df["ErlabngB_value"].apply(
|
385 |
+
lambda x: GsmAnalysis.erlangB_table.get(int(x) if pd.notnull(x) else 0, 0)
|
386 |
+
)
|
387 |
+
|
388 |
+
# "Target HR CHs" equal to "Target FR CHs" * 2
|
389 |
+
gsm_analysis_df["Target HR CHs"] = gsm_analysis_df["Target FR CHs"] * 2
|
390 |
+
|
391 |
+
# - Target TCHs equal to Target HR CHs + Signal + GPRS + SDCCH
|
392 |
+
gsm_analysis_df["Target TCHs"] = (
|
393 |
+
gsm_analysis_df["Target HR CHs"]
|
394 |
+
+ gsm_analysis_df["number_signals_per_cell"]
|
395 |
+
+ gsm_analysis_df["GPRS"]
|
396 |
+
+ gsm_analysis_df["number_sd_per_cell"]
|
397 |
+
)
|
398 |
+
# "Target TRXs" equal to roundup(Target TCHs/8)
|
399 |
+
gsm_analysis_df["Target TRXs"] = np.ceil(
|
400 |
+
gsm_analysis_df["Target TCHs"] / 8
|
401 |
+
) # df["Target TCHs"] / 8
|
402 |
+
|
403 |
+
# "Numberof required TRXs" equal to difference between "Target TRXs" and "number_trx_per_cell"
|
404 |
+
gsm_analysis_df["Numberof required TRXs"] = (
|
405 |
+
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
|
406 |
+
)
|
407 |
+
|
408 |
+
return [gsm_analysis_df, bh_kpi_full_df]
|