return back to storage database
Browse files- physical_db/physical_database.csv +1 -0
- utils/utils_vars.py +2 -2
physical_db/physical_database.csv
CHANGED
@@ -4682,3 +4682,4 @@
|
|
4682 |
6613,1,6613_1,40,-8.167444,10.781694,57.4,2,2
|
4683 |
6613,2,6613_2,130,-8.167444,10.781694,57.4,2,2
|
4684 |
6613,3,6613_3,290,-8.167444,10.781694,57.4,2,2
|
|
|
|
4682 |
6613,1,6613_1,40,-8.167444,10.781694,57.4,2,2
|
4683 |
6613,2,6613_2,130,-8.167444,10.781694,57.4,2,2
|
4684 |
6613,3,6613_3,290,-8.167444,10.781694,57.4,2,2
|
4685 |
+
1424,1,1424_1,120,7.9318982,12.66053852,0,0,0
|
utils/utils_vars.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
|
4 |
-
url = "https://raw.githubusercontent.com/DavMelchi/STORAGE/refs/heads/main/physical_db/physical_database.csv"
|
|
|
5 |
|
6 |
|
7 |
def get_physical_db():
|
@@ -13,7 +14,6 @@ def get_physical_db():
|
|
13 |
Returns:
|
14 |
pd.DataFrame: A DataFrame containing the filtered columns.
|
15 |
"""
|
16 |
-
# physical = pd.read_csv(r"./physical_db/physical_database.csv")
|
17 |
physical = pd.read_csv(url)
|
18 |
physical = physical[["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur"]]
|
19 |
return physical
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
|
4 |
+
# url = "https://raw.githubusercontent.com/DavMelchi/STORAGE/refs/heads/main/physical_db/physical_database.csv"
|
5 |
+
url = r"./physical_db/physical_database.csv"
|
6 |
|
7 |
|
8 |
def get_physical_db():
|
|
|
14 |
Returns:
|
15 |
pd.DataFrame: A DataFrame containing the filtered columns.
|
16 |
"""
|
|
|
17 |
physical = pd.read_csv(url)
|
18 |
physical = physical[["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur"]]
|
19 |
return physical
|