clear Pandas .loc warning
Browse files- queries/process_gsm.py +6 -6
- queries/process_wcdma.py +2 -2
queries/process_gsm.py
CHANGED
|
@@ -232,8 +232,8 @@ def gsm_analaysis(file_path: str):
|
|
| 232 |
df_site_per_bsc = gsm_df[["BSC", "code"]]
|
| 233 |
df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
|
| 234 |
|
| 235 |
-
df_site_per_lac = gsm_df[["BSC", "locationAreaIdLAC", "code"]]
|
| 236 |
-
df_site_per_lac["code_lac"] = (
|
| 237 |
df_site_per_lac["code"].astype(str)
|
| 238 |
+ "_"
|
| 239 |
+ df_site_per_lac["locationAreaIdLAC"].astype(str)
|
|
@@ -285,13 +285,13 @@ def gsm_analaysis(file_path: str):
|
|
| 285 |
# Add "BSC_" and "LAC_" prefix to LAC column
|
| 286 |
GsmAnalysisData.number_of_cell_per_lac["LAC"] = (
|
| 287 |
"LAC_" + GsmAnalysisData.number_of_cell_per_lac["LAC"].astype(str)
|
| 288 |
-
)
|
| 289 |
|
| 290 |
GsmAnalysisData.number_of_cell_per_lac["BSC_NAME_ID"] = (
|
| 291 |
GsmAnalysisData.number_of_cell_per_lac[["BSC_NAME", "BSC"]]
|
| 292 |
.astype(str)
|
| 293 |
.apply("_".join, axis=1)
|
| 294 |
-
)
|
| 295 |
|
| 296 |
GsmAnalysisData.number_of_cell_per_lac = GsmAnalysisData.number_of_cell_per_lac[
|
| 297 |
["BSC_NAME_ID", "LAC", "count"]
|
|
@@ -316,12 +316,12 @@ def gsm_analaysis(file_path: str):
|
|
| 316 |
# Add "BSC_" and "LAC_" prefix to LAC column
|
| 317 |
GsmAnalysisData.number_of_site_per_lac["LAC"] = (
|
| 318 |
"LAC_" + GsmAnalysisData.number_of_site_per_lac["LAC"].astype(str)
|
| 319 |
-
)
|
| 320 |
GsmAnalysisData.number_of_site_per_lac["BSC_NAME_ID"] = (
|
| 321 |
GsmAnalysisData.number_of_site_per_lac[["BSC_NAME", "BSC"]]
|
| 322 |
.astype(str)
|
| 323 |
.apply("_".join, axis=1)
|
| 324 |
-
)
|
| 325 |
GsmAnalysisData.number_of_site_per_lac = GsmAnalysisData.number_of_site_per_lac[
|
| 326 |
["BSC_NAME_ID", "LAC", "count"]
|
| 327 |
]
|
|
|
|
| 232 |
df_site_per_bsc = gsm_df[["BSC", "code"]]
|
| 233 |
df_site_per_bsc = df_site_per_bsc.drop_duplicates(subset=["code"], keep="first")
|
| 234 |
|
| 235 |
+
df_site_per_lac = gsm_df.loc[:, ["BSC", "locationAreaIdLAC", "code"]].copy()
|
| 236 |
+
df_site_per_lac.loc[:, "code_lac"] = (
|
| 237 |
df_site_per_lac["code"].astype(str)
|
| 238 |
+ "_"
|
| 239 |
+ df_site_per_lac["locationAreaIdLAC"].astype(str)
|
|
|
|
| 285 |
# Add "BSC_" and "LAC_" prefix to LAC column
|
| 286 |
GsmAnalysisData.number_of_cell_per_lac["LAC"] = (
|
| 287 |
"LAC_" + GsmAnalysisData.number_of_cell_per_lac["LAC"].astype(str)
|
| 288 |
+
).str.replace(".0", "")
|
| 289 |
|
| 290 |
GsmAnalysisData.number_of_cell_per_lac["BSC_NAME_ID"] = (
|
| 291 |
GsmAnalysisData.number_of_cell_per_lac[["BSC_NAME", "BSC"]]
|
| 292 |
.astype(str)
|
| 293 |
.apply("_".join, axis=1)
|
| 294 |
+
).str.replace(".0", "")
|
| 295 |
|
| 296 |
GsmAnalysisData.number_of_cell_per_lac = GsmAnalysisData.number_of_cell_per_lac[
|
| 297 |
["BSC_NAME_ID", "LAC", "count"]
|
|
|
|
| 316 |
# Add "BSC_" and "LAC_" prefix to LAC column
|
| 317 |
GsmAnalysisData.number_of_site_per_lac["LAC"] = (
|
| 318 |
"LAC_" + GsmAnalysisData.number_of_site_per_lac["LAC"].astype(str)
|
| 319 |
+
).str.replace(".0", "")
|
| 320 |
GsmAnalysisData.number_of_site_per_lac["BSC_NAME_ID"] = (
|
| 321 |
GsmAnalysisData.number_of_site_per_lac[["BSC_NAME", "BSC"]]
|
| 322 |
.astype(str)
|
| 323 |
.apply("_".join, axis=1)
|
| 324 |
+
).str.replace(".0", "")
|
| 325 |
GsmAnalysisData.number_of_site_per_lac = GsmAnalysisData.number_of_site_per_lac[
|
| 326 |
["BSC_NAME_ID", "LAC", "count"]
|
| 327 |
]
|
queries/process_wcdma.py
CHANGED
|
@@ -244,8 +244,8 @@ def wcdma_analaysis(
|
|
| 244 |
df_site_per_rnc = wcdma_df[["RNC", "code"]]
|
| 245 |
df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
|
| 246 |
|
| 247 |
-
df_site_per_lac = wcdma_df[["RNC", "LAC", "code"]]
|
| 248 |
-
df_site_per_lac["code_lac"] = (
|
| 249 |
df_site_per_lac["code"].astype(str) + "_" + df_site_per_lac["LAC"].astype(str)
|
| 250 |
)
|
| 251 |
df_site_per_lac = df_site_per_lac.drop_duplicates(subset=["code_lac"], keep="first")
|
|
|
|
| 244 |
df_site_per_rnc = wcdma_df[["RNC", "code"]]
|
| 245 |
df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
|
| 246 |
|
| 247 |
+
df_site_per_lac = wcdma_df.loc[:, ["RNC", "LAC", "code"]].copy()
|
| 248 |
+
df_site_per_lac.loc[:, "code_lac"] = (
|
| 249 |
df_site_per_lac["code"].astype(str) + "_" + df_site_per_lac["LAC"].astype(str)
|
| 250 |
)
|
| 251 |
df_site_per_lac = df_site_per_lac.drop_duplicates(subset=["code_lac"], keep="first")
|