additional 3g parameters
Browse files- queries/process_wcdma.py +28 -1
queries/process_wcdma.py
CHANGED
@@ -38,6 +38,27 @@ WCEL_COLUMNS = [
|
|
38 |
"PtxOffset",
|
39 |
"PtxTarget",
|
40 |
"SmartLTELayeringEnabled",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
"SectorID",
|
42 |
"Code_Sector",
|
43 |
"code_wcel",
|
@@ -163,7 +184,10 @@ def process_wcdma_data_to_excel(file_path: str):
|
|
163 |
############################ANALYTICSS AND STATISTICS############################
|
164 |
|
165 |
|
166 |
-
def wcdma_analaysis(
|
|
|
|
|
|
|
167 |
"""
|
168 |
Process WCDMA data from the specified file path and convert it to Excel format
|
169 |
|
@@ -172,6 +196,9 @@ def wcdma_analaysis(filepath: str):
|
|
172 |
"""
|
173 |
wcdma_df = process_wcdma_data(filepath)
|
174 |
|
|
|
|
|
|
|
175 |
# df to count number of site per rnc
|
176 |
df_site_per_rnc = wcdma_df[["RNC", "code"]]
|
177 |
df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
|
|
|
38 |
"PtxOffset",
|
39 |
"PtxTarget",
|
40 |
"SmartLTELayeringEnabled",
|
41 |
+
"HSDPAFmcgIdentifier",
|
42 |
+
"NrtFmcgIdentifier",
|
43 |
+
"RtFmcgIdentifier",
|
44 |
+
"RTWithHSDPAFmcgIdentifier",
|
45 |
+
"HSDPAFmciIdentifier",
|
46 |
+
"NrtFmciIdentifier",
|
47 |
+
"RtFmciIdentifier",
|
48 |
+
"RTWithHSDPAFmciIdentifier",
|
49 |
+
"HSDPAFmcsIdentifier",
|
50 |
+
"HSPAFmcsIdentifier",
|
51 |
+
"NrtFmcsIdentifier",
|
52 |
+
"RtFmcsIdentifier",
|
53 |
+
"RTWithHSDPAFmcsIdentifier",
|
54 |
+
"RTWithHSPAFmcsIdentifier",
|
55 |
+
"Sintersearch",
|
56 |
+
"SintersearchConn",
|
57 |
+
"Sintrasearch",
|
58 |
+
"SintrasearchConn",
|
59 |
+
"Ssearch_RATConn",
|
60 |
+
"TreselectionFACH",
|
61 |
+
"TreselectionPCH",
|
62 |
"SectorID",
|
63 |
"Code_Sector",
|
64 |
"code_wcel",
|
|
|
184 |
############################ANALYTICSS AND STATISTICS############################
|
185 |
|
186 |
|
187 |
+
def wcdma_analaysis(
|
188 |
+
filepath: str,
|
189 |
+
# region_list: list
|
190 |
+
):
|
191 |
"""
|
192 |
Process WCDMA data from the specified file path and convert it to Excel format
|
193 |
|
|
|
196 |
"""
|
197 |
wcdma_df = process_wcdma_data(filepath)
|
198 |
|
199 |
+
# filter per list of regions
|
200 |
+
# wcdma_df = wcdma_df.loc[wcdma_df["Region"].isin(region_list)]
|
201 |
+
|
202 |
# df to count number of site per rnc
|
203 |
df_site_per_rnc = wcdma_df[["RNC", "code"]]
|
204 |
df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
|