DavMelchi commited on
Commit
f8d488f
·
1 Parent(s): 6d0709a

additional 3g parameters

Browse files
Files changed (1) hide show
  1. queries/process_wcdma.py +28 -1
queries/process_wcdma.py CHANGED
@@ -38,6 +38,27 @@ WCEL_COLUMNS = [
38
  "PtxOffset",
39
  "PtxTarget",
40
  "SmartLTELayeringEnabled",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  "SectorID",
42
  "Code_Sector",
43
  "code_wcel",
@@ -163,7 +184,10 @@ def process_wcdma_data_to_excel(file_path: str):
163
  ############################ANALYTICSS AND STATISTICS############################
164
 
165
 
166
- def wcdma_analaysis(filepath: str):
 
 
 
167
  """
168
  Process WCDMA data from the specified file path and convert it to Excel format
169
 
@@ -172,6 +196,9 @@ def wcdma_analaysis(filepath: str):
172
  """
173
  wcdma_df = process_wcdma_data(filepath)
174
 
 
 
 
175
  # df to count number of site per rnc
176
  df_site_per_rnc = wcdma_df[["RNC", "code"]]
177
  df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")
 
38
  "PtxOffset",
39
  "PtxTarget",
40
  "SmartLTELayeringEnabled",
41
+ "HSDPAFmcgIdentifier",
42
+ "NrtFmcgIdentifier",
43
+ "RtFmcgIdentifier",
44
+ "RTWithHSDPAFmcgIdentifier",
45
+ "HSDPAFmciIdentifier",
46
+ "NrtFmciIdentifier",
47
+ "RtFmciIdentifier",
48
+ "RTWithHSDPAFmciIdentifier",
49
+ "HSDPAFmcsIdentifier",
50
+ "HSPAFmcsIdentifier",
51
+ "NrtFmcsIdentifier",
52
+ "RtFmcsIdentifier",
53
+ "RTWithHSDPAFmcsIdentifier",
54
+ "RTWithHSPAFmcsIdentifier",
55
+ "Sintersearch",
56
+ "SintersearchConn",
57
+ "Sintrasearch",
58
+ "SintrasearchConn",
59
+ "Ssearch_RATConn",
60
+ "TreselectionFACH",
61
+ "TreselectionPCH",
62
  "SectorID",
63
  "Code_Sector",
64
  "code_wcel",
 
184
  ############################ANALYTICSS AND STATISTICS############################
185
 
186
 
187
+ def wcdma_analaysis(
188
+ filepath: str,
189
+ # region_list: list
190
+ ):
191
  """
192
  Process WCDMA data from the specified file path and convert it to Excel format
193
 
 
196
  """
197
  wcdma_df = process_wcdma_data(filepath)
198
 
199
+ # filter per list of regions
200
+ # wcdma_df = wcdma_df.loc[wcdma_df["Region"].isin(region_list)]
201
+
202
  # df to count number of site per rnc
203
  df_site_per_rnc = wcdma_df[["RNC", "code"]]
204
  df_site_per_rnc = df_site_per_rnc.drop_duplicates(subset=["code"], keep="first")