adding fn4b parser
Browse files- Changelog.md +4 -0
- app.py +2 -1
- apps/fnb_parser.py +324 -0
- requirements.txt +0 -0
Changelog.md
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
|
2 |
# CHANGELOGS
|
3 |
|
|
|
|
|
|
|
|
|
4 |
## [0.2.10] - 2025-07-01
|
5 |
|
6 |
- Add KPI analysis App
|
|
|
1 |
|
2 |
# CHANGELOGS
|
3 |
|
4 |
+
## [0.2.11] - 2025-07-04
|
5 |
+
|
6 |
+
- Add FNB parser App
|
7 |
+
|
8 |
## [0.2.10] - 2025-07-01
|
9 |
|
10 |
- Add KPI analysis App
|
app.py
CHANGED
@@ -108,7 +108,7 @@ if check_password():
|
|
108 |
layout="wide",
|
109 |
initial_sidebar_state="expanded",
|
110 |
menu_items={
|
111 |
-
"About": "**📡 NPO DB Query v0.2.
|
112 |
},
|
113 |
)
|
114 |
|
@@ -133,6 +133,7 @@ if check_password():
|
|
133 |
"apps/clustering.py",
|
134 |
title="📡 Automatic Site Clustering",
|
135 |
),
|
|
|
136 |
st.Page(
|
137 |
"apps/import_physical_db.py", title="🌏Physical Database Verification"
|
138 |
),
|
|
|
108 |
layout="wide",
|
109 |
initial_sidebar_state="expanded",
|
110 |
menu_items={
|
111 |
+
"About": "**📡 NPO DB Query v0.2.11**",
|
112 |
},
|
113 |
)
|
114 |
|
|
|
133 |
"apps/clustering.py",
|
134 |
title="📡 Automatic Site Clustering",
|
135 |
),
|
136 |
+
st.Page("apps/fnb_parser.py", title="📄 F4NB Extractor"),
|
137 |
st.Page(
|
138 |
"apps/import_physical_db.py", title="🌏Physical Database Verification"
|
139 |
),
|
apps/fnb_parser.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Streamlit application for extracting site and sector information from .docx design files.
|
3 |
+
The logic is adapted from `Sector Stacked.py` but provides an interactive UI where users can
|
4 |
+
upload one or many Word documents and instantly visualise / download the results.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
import re
|
10 |
+
from typing import List
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
import plotly.express as px
|
14 |
+
import streamlit as st
|
15 |
+
from docx import Document
|
16 |
+
|
17 |
+
###############################################################################
|
18 |
+
# --------------------------- Core extract logic -------------------------- #
|
19 |
+
###############################################################################
|
20 |
+
|
21 |
+
|
22 |
+
def extract_info_from_docx_separated_sectors(
|
23 |
+
docx_bytes: bytes, filename: str
|
24 |
+
) -> List[dict]:
|
25 |
+
"""Extract the site-level and sector-level information from a Word design file.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
docx_bytes : bytes
|
30 |
+
Raw bytes of the `.docx` file – read directly from the Streamlit uploader.
|
31 |
+
filename : str
|
32 |
+
Original filename. Used only for reference in the output.
|
33 |
+
|
34 |
+
Returns
|
35 |
+
-------
|
36 |
+
list[dict]
|
37 |
+
A list containing up to three dictionaries – one for each sector.
|
38 |
+
"""
|
39 |
+
# python-docx can open a file-like object, so we wrap the bytes in BytesIO
|
40 |
+
doc = Document(io.BytesIO(docx_bytes))
|
41 |
+
|
42 |
+
# Shared site information
|
43 |
+
site_shared = {
|
44 |
+
"File": filename,
|
45 |
+
"Code": None,
|
46 |
+
"Site Name": None,
|
47 |
+
"Localité": None,
|
48 |
+
"Adresse": None,
|
49 |
+
"X": None,
|
50 |
+
"Y": None,
|
51 |
+
"Z": None,
|
52 |
+
"UTM_Zone": None,
|
53 |
+
}
|
54 |
+
|
55 |
+
# Per-sector placeholders (we assume max 3 sectors)
|
56 |
+
sector_data = {
|
57 |
+
"Azimuth": [None] * 3,
|
58 |
+
"Height": [None] * 3,
|
59 |
+
"MechTilt": [None] * 3,
|
60 |
+
"ElecTilt": [None] * 3,
|
61 |
+
}
|
62 |
+
|
63 |
+
# Iterate tables / rows / cells once, filling the data structures
|
64 |
+
for table in doc.tables:
|
65 |
+
for row in table.rows:
|
66 |
+
# Drop empty cells and overspaces
|
67 |
+
cells = [cell.text.strip() for cell in row.cells if cell.text.strip()]
|
68 |
+
if not cells:
|
69 |
+
continue
|
70 |
+
|
71 |
+
row_text_lower = " | ".join(cells).lower()
|
72 |
+
|
73 |
+
# Code (assumes pattern "T00" / "N01" typical of site codes)
|
74 |
+
if site_shared["Code"] is None and any("code" in c.lower() for c in cells):
|
75 |
+
for val in cells:
|
76 |
+
if ("t00" in val.lower()) or ("n01" in val.lower()):
|
77 |
+
site_shared["Code"] = val.replace(" ", "").strip()
|
78 |
+
break
|
79 |
+
|
80 |
+
# Site Name – same heuristic as original script
|
81 |
+
if site_shared["Site Name"] is None and any(
|
82 |
+
"nom" in c.lower() for c in cells
|
83 |
+
):
|
84 |
+
for val in cells:
|
85 |
+
if ("t00" in val.lower()) or ("n01" in val.lower()):
|
86 |
+
site_shared["Site Name"] = val.strip()
|
87 |
+
break
|
88 |
+
|
89 |
+
# UTM Zone
|
90 |
+
if site_shared["UTM_Zone"] is None:
|
91 |
+
utm_match = re.search(r"utm\s*(\d+)", row_text_lower)
|
92 |
+
if utm_match:
|
93 |
+
site_shared["UTM_Zone"] = f"UTM{utm_match.group(1)}"
|
94 |
+
|
95 |
+
# Localité and Adresse
|
96 |
+
if site_shared["Localité"] is None and any(
|
97 |
+
"localité" in c.lower() for c in cells
|
98 |
+
):
|
99 |
+
for val in cells:
|
100 |
+
if val.lower() != "localité:":
|
101 |
+
site_shared["Localité"] = val.strip()
|
102 |
+
break
|
103 |
+
if site_shared["Adresse"] is None and any(
|
104 |
+
"adresse" in c.lower() for c in cells
|
105 |
+
):
|
106 |
+
for val in cells:
|
107 |
+
if val.lower() != "adresse:":
|
108 |
+
site_shared["Adresse"] = val.strip()
|
109 |
+
break
|
110 |
+
|
111 |
+
# Coordinates (X, Y, Z)
|
112 |
+
if {"X", "Y", "Z"}.intersection(cells):
|
113 |
+
for i, cell_text in enumerate(cells):
|
114 |
+
text = cell_text.strip()
|
115 |
+
# X coordinate
|
116 |
+
if text == "X" and i + 1 < len(cells):
|
117 |
+
site_shared["X"] = cells[i + 1].strip()
|
118 |
+
# Y coordinate – could be in same cell e.g. "Y 123" or split
|
119 |
+
elif re.search(r"Y\s*[0-9]", text):
|
120 |
+
match = re.search(r"Y\s*([0-9°'\.\sWE]+)", text)
|
121 |
+
if match:
|
122 |
+
site_shared["Y"] = match.group(1).strip()
|
123 |
+
elif text == "Y" and i + 1 < len(cells):
|
124 |
+
site_shared["Y"] = cells[i + 1].strip()
|
125 |
+
# Z / Elevation
|
126 |
+
elif re.search(r"Z\s*[0-9]", text):
|
127 |
+
match = re.search(r"Z\s*([0-9]+)", text)
|
128 |
+
if match:
|
129 |
+
site_shared["Z"] = match.group(1).strip()
|
130 |
+
elif text == "Z" and i + 1 < len(cells):
|
131 |
+
z_val = re.search(r"([0-9]+)", cells[i + 1])
|
132 |
+
if z_val:
|
133 |
+
site_shared["Z"] = z_val.group(1).strip()
|
134 |
+
|
135 |
+
# Sector-specific lines
|
136 |
+
first_cell = cells[0].lower()
|
137 |
+
if first_cell == "azimut":
|
138 |
+
for i in range(min(3, len(cells) - 1)):
|
139 |
+
sector_data["Azimuth"][i] = cells[i + 1]
|
140 |
+
elif "hauteur des aériens" in first_cell:
|
141 |
+
for i in range(min(3, len(cells) - 1)):
|
142 |
+
sector_data["Height"][i] = cells[i + 1]
|
143 |
+
elif "tilt mécanique" in first_cell:
|
144 |
+
for i in range(min(3, len(cells) - 1)):
|
145 |
+
sector_data["MechTilt"][i] = cells[i + 1]
|
146 |
+
elif "tilt électrique" in first_cell:
|
147 |
+
for i in range(min(3, len(cells) - 1)):
|
148 |
+
sector_data["ElecTilt"][i] = cells[i + 1]
|
149 |
+
|
150 |
+
# Convert to per-sector rows
|
151 |
+
rows: List[dict] = []
|
152 |
+
for sector_id in range(3):
|
153 |
+
if sector_data["Azimuth"][sector_id]:
|
154 |
+
rows.append(
|
155 |
+
{
|
156 |
+
**site_shared,
|
157 |
+
"Sector ID": sector_id + 1,
|
158 |
+
"Azimuth": sector_data["Azimuth"][sector_id],
|
159 |
+
"Height": sector_data["Height"][sector_id],
|
160 |
+
"MechTilt": sector_data["MechTilt"][sector_id],
|
161 |
+
"ElecTilt": sector_data["ElecTilt"][sector_id],
|
162 |
+
}
|
163 |
+
)
|
164 |
+
return rows
|
165 |
+
|
166 |
+
|
167 |
+
def convert_coord_to_decimal(coord: str, default_direction: str | None = None):
|
168 |
+
"""Convert coordinate strings containing degrees/minutes/seconds to decimal degrees.
|
169 |
+
|
170 |
+
Handles various formats, e.g. "3° 33' 12.4\" W", "3 33 12.4 O", "-3.5534", "3.5534E".
|
171 |
+
West (W/O) or South (S) are returned as negative values.
|
172 |
+
Returns None if conversion fails.
|
173 |
+
"""
|
174 |
+
|
175 |
+
if coord is None or (isinstance(coord, float) and pd.isna(coord)):
|
176 |
+
return None
|
177 |
+
|
178 |
+
# Normalise the string – unify decimal separator and strip spaces
|
179 |
+
text = str(coord).replace(",", ".").strip()
|
180 |
+
if not text:
|
181 |
+
return None
|
182 |
+
|
183 |
+
# Detect hemisphere / direction letters
|
184 |
+
direction = None
|
185 |
+
match_dir = re.search(r"([NSEWnsewOo])", text)
|
186 |
+
if match_dir:
|
187 |
+
direction = match_dir.group(1).upper()
|
188 |
+
text = text.replace(match_dir.group(1), "") # remove letter for numeric parsing
|
189 |
+
else:
|
190 |
+
# No explicit letter – use supplied default if provided
|
191 |
+
if default_direction is not None:
|
192 |
+
direction = default_direction.upper()
|
193 |
+
|
194 |
+
# Grab all numeric components
|
195 |
+
nums = re.findall(r"[-+]?(?:\d+\.?\d*)", text)
|
196 |
+
if not nums:
|
197 |
+
return None
|
198 |
+
|
199 |
+
# Convert strings to float
|
200 |
+
nums_f = [float(n) for n in nums]
|
201 |
+
|
202 |
+
# Determine decimal value depending on how many components we have
|
203 |
+
if len(nums_f) >= 3:
|
204 |
+
deg, minute, sec = nums_f[0], nums_f[1], nums_f[2]
|
205 |
+
dec = deg + minute / 60 + sec / 3600
|
206 |
+
elif len(nums_f) == 2:
|
207 |
+
deg, minute = nums_f[0], nums_f[1]
|
208 |
+
dec = deg + minute / 60
|
209 |
+
else: # Already decimal degrees
|
210 |
+
dec = nums_f[0]
|
211 |
+
|
212 |
+
# Apply sign for West/Ouest/South
|
213 |
+
if direction in {"W", "O", "S"}: # West/Ouest or South => negative
|
214 |
+
dec = -abs(dec)
|
215 |
+
|
216 |
+
return dec
|
217 |
+
|
218 |
+
|
219 |
+
def process_files_to_dataframe(uploaded_files) -> pd.DataFrame:
|
220 |
+
"""Run extraction on the uploaded files and return a concatenated dataframe."""
|
221 |
+
all_rows: List[dict] = []
|
222 |
+
for uploaded in uploaded_files:
|
223 |
+
rows = extract_info_from_docx_separated_sectors(uploaded.read(), uploaded.name)
|
224 |
+
all_rows.extend(rows)
|
225 |
+
df = pd.DataFrame(all_rows)
|
226 |
+
|
227 |
+
# Add decimal conversion for X and Y
|
228 |
+
if not df.empty and {"X", "Y"}.issubset(df.columns):
|
229 |
+
df["X_decimal"] = df["X"].apply(
|
230 |
+
lambda c: convert_coord_to_decimal(c, default_direction="N")
|
231 |
+
)
|
232 |
+
df["Y_decimal"] = df["Y"].apply(
|
233 |
+
lambda c: convert_coord_to_decimal(c, default_direction="W")
|
234 |
+
)
|
235 |
+
|
236 |
+
return df
|
237 |
+
|
238 |
+
|
239 |
+
###############################################################################
|
240 |
+
# ----------------------------- Streamlit UI ------------------------------ #
|
241 |
+
###############################################################################
|
242 |
+
|
243 |
+
|
244 |
+
def main() -> None:
|
245 |
+
st.set_page_config(
|
246 |
+
page_title="F4NB Extractor to Excel", page_icon="📄", layout="wide"
|
247 |
+
)
|
248 |
+
|
249 |
+
st.title("📄 F4NB Extractor to Excel")
|
250 |
+
st.markdown(
|
251 |
+
"Convert F4NB Word documents into a tidy Excel / DataFrame containing site & sector information.\n"
|
252 |
+
"Upload one or many F4NB `.docx` files and hit **Process**."
|
253 |
+
)
|
254 |
+
|
255 |
+
st.subheader("Upload Files")
|
256 |
+
uploaded_files = st.file_uploader(
|
257 |
+
"Select one or more F4NB `.docx` files",
|
258 |
+
type=["docx"],
|
259 |
+
accept_multiple_files=True,
|
260 |
+
)
|
261 |
+
process_btn = st.button("Process", type="primary", disabled=not uploaded_files)
|
262 |
+
|
263 |
+
if process_btn and uploaded_files:
|
264 |
+
with st.spinner("Extracting information…"):
|
265 |
+
df = process_files_to_dataframe(uploaded_files)
|
266 |
+
|
267 |
+
if df.empty:
|
268 |
+
st.warning(
|
269 |
+
"No data extracted. Check that the files conform to the expected format."
|
270 |
+
)
|
271 |
+
return
|
272 |
+
|
273 |
+
st.success(
|
274 |
+
f"Processed {len(uploaded_files)} file(s) – extracted {len(df)} sector rows."
|
275 |
+
)
|
276 |
+
st.dataframe(df, use_container_width=True)
|
277 |
+
|
278 |
+
# Interactive map of extracted coordinates using Plotly
|
279 |
+
if {"Y_decimal", "X_decimal"}.issubset(df.columns):
|
280 |
+
geo_df = (
|
281 |
+
df[["Y_decimal", "X_decimal", "Site Name", "Code"]]
|
282 |
+
.dropna()
|
283 |
+
.rename(columns={"Y_decimal": "Longitude", "X_decimal": "Latitude"})
|
284 |
+
.assign(
|
285 |
+
Size=lambda d: (
|
286 |
+
pd.to_numeric(d["Height"], errors="coerce").fillna(10)
|
287 |
+
if "Height" in d.columns
|
288 |
+
else 10
|
289 |
+
)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
if not geo_df.empty:
|
293 |
+
st.subheader("🗺️ Site Locations")
|
294 |
+
fig = px.scatter_map(
|
295 |
+
geo_df,
|
296 |
+
lat="Latitude",
|
297 |
+
lon="Longitude",
|
298 |
+
hover_name="Site Name",
|
299 |
+
hover_data={"Code": True},
|
300 |
+
size="Size",
|
301 |
+
size_max=10,
|
302 |
+
zoom=6,
|
303 |
+
height=500,
|
304 |
+
)
|
305 |
+
fig.update_layout(
|
306 |
+
mapbox_style="open-street-map",
|
307 |
+
margin={"r": 0, "t": 0, "l": 0, "b": 0},
|
308 |
+
)
|
309 |
+
st.plotly_chart(fig, use_container_width=True)
|
310 |
+
|
311 |
+
# Offer download as Excel
|
312 |
+
buffer = io.BytesIO()
|
313 |
+
with pd.ExcelWriter(buffer, engine="xlsxwriter") as writer:
|
314 |
+
df.to_excel(writer, index=False, sheet_name="Extract")
|
315 |
+
st.download_button(
|
316 |
+
label="💾 Download Excel",
|
317 |
+
data=buffer.getvalue(),
|
318 |
+
file_name="extracted_fnb.xlsx",
|
319 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
320 |
+
)
|
321 |
+
|
322 |
+
|
323 |
+
if __name__ == "__main__": # pragma: no cover
|
324 |
+
main()
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|