Adding clustering App
Browse files- Changelog.md +1 -0
- app.py +4 -0
- apps/clustering.py +103 -0
Changelog.md
CHANGED
@@ -5,6 +5,7 @@
|
|
5 |
|
6 |
- Add paging analysis App
|
7 |
- Add capacity analysis App
|
|
|
8 |
|
9 |
## [0.2.8] - 2025-04-22
|
10 |
|
|
|
5 |
|
6 |
- Add paging analysis App
|
7 |
- Add capacity analysis App
|
8 |
+
- Add automatic site clustering App
|
9 |
|
10 |
## [0.2.8] - 2025-04-22
|
11 |
|
app.py
CHANGED
@@ -129,6 +129,10 @@ if check_password():
|
|
129 |
"apps/sector_kml_generator.py",
|
130 |
title="📡 Sector KML Generator",
|
131 |
),
|
|
|
|
|
|
|
|
|
132 |
st.Page(
|
133 |
"apps/import_physical_db.py", title="🌏Physical Database Verification"
|
134 |
),
|
|
|
129 |
"apps/sector_kml_generator.py",
|
130 |
title="📡 Sector KML Generator",
|
131 |
),
|
132 |
+
st.Page(
|
133 |
+
"apps/clustering.py",
|
134 |
+
title="📡 Automatic Site Clustering",
|
135 |
+
),
|
136 |
st.Page(
|
137 |
"apps/import_physical_db.py", title="🌏Physical Database Verification"
|
138 |
),
|
apps/clustering.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
import streamlit as st
|
7 |
+
from sklearn.cluster import KMeans
|
8 |
+
|
9 |
+
|
10 |
+
def cluster_sites(
|
11 |
+
df: pd.DataFrame,
|
12 |
+
lat_col: str,
|
13 |
+
lon_col: str,
|
14 |
+
region_col: str,
|
15 |
+
max_sites: int = 25,
|
16 |
+
mix_regions: bool = False,
|
17 |
+
):
|
18 |
+
clusters = []
|
19 |
+
cluster_id = 0
|
20 |
+
|
21 |
+
if not mix_regions:
|
22 |
+
grouped = df.groupby(region_col)
|
23 |
+
else:
|
24 |
+
grouped = [("All", df)]
|
25 |
+
|
26 |
+
for region, group in grouped:
|
27 |
+
coords = group[[lat_col, lon_col]].to_numpy()
|
28 |
+
n_clusters = max(1, int(np.ceil(len(group) / max_sites)))
|
29 |
+
|
30 |
+
if len(group) < max_sites:
|
31 |
+
labels = np.zeros(len(group), dtype=int)
|
32 |
+
else:
|
33 |
+
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
|
34 |
+
labels = kmeans.fit_predict(coords)
|
35 |
+
|
36 |
+
group = group.copy()
|
37 |
+
group["Cluster"] = [f"C{cluster_id + l}" for l in labels]
|
38 |
+
clusters.append(group)
|
39 |
+
cluster_id += len(set(labels))
|
40 |
+
|
41 |
+
return pd.concat(clusters)
|
42 |
+
|
43 |
+
|
44 |
+
def to_excel(df: pd.DataFrame) -> bytes:
|
45 |
+
output = BytesIO()
|
46 |
+
with pd.ExcelWriter(output, engine="xlsxwriter") as writer:
|
47 |
+
df.to_excel(writer, index=False, sheet_name="Clusters")
|
48 |
+
return output.getvalue()
|
49 |
+
|
50 |
+
|
51 |
+
st.title("Automatic Site Clustering App")
|
52 |
+
|
53 |
+
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
54 |
+
|
55 |
+
if uploaded_file:
|
56 |
+
df = pd.read_excel(uploaded_file)
|
57 |
+
st.write("Sample of uploaded data:", df.head())
|
58 |
+
|
59 |
+
columns = df.columns.tolist()
|
60 |
+
|
61 |
+
with st.form("clustering_form"):
|
62 |
+
lat_col = st.selectbox("Select Latitude column", columns)
|
63 |
+
lon_col = st.selectbox("Select Longitude column", columns)
|
64 |
+
region_col = st.selectbox("Select Region column", columns)
|
65 |
+
code_col = st.selectbox("Select Site Code column", columns)
|
66 |
+
max_sites = st.number_input(
|
67 |
+
"Max sites per cluster", min_value=5, max_value=100, value=25
|
68 |
+
)
|
69 |
+
mix_regions = st.checkbox(
|
70 |
+
"Allow mixing different regions in clusters", value=False
|
71 |
+
)
|
72 |
+
submitted = st.form_submit_button("Run Clustering")
|
73 |
+
|
74 |
+
if submitted:
|
75 |
+
clustered_df = cluster_sites(
|
76 |
+
df, lat_col, lon_col, region_col, max_sites, mix_regions
|
77 |
+
)
|
78 |
+
st.success("Clustering completed!")
|
79 |
+
st.write(clustered_df.head())
|
80 |
+
|
81 |
+
# Plot
|
82 |
+
fig = px.scatter_map(
|
83 |
+
clustered_df,
|
84 |
+
lat=lat_col,
|
85 |
+
lon=lon_col,
|
86 |
+
color="Cluster",
|
87 |
+
hover_name=code_col,
|
88 |
+
hover_data=[region_col],
|
89 |
+
zoom=5,
|
90 |
+
height=600,
|
91 |
+
)
|
92 |
+
fig.update_layout(mapbox_style="open-street-map")
|
93 |
+
st.plotly_chart(fig)
|
94 |
+
|
95 |
+
# Download button
|
96 |
+
st.download_button(
|
97 |
+
label="Download clustered Excel file",
|
98 |
+
data=to_excel(clustered_df),
|
99 |
+
file_name="clustered_sites.xlsx",
|
100 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
101 |
+
on_click="ignore",
|
102 |
+
type="primary",
|
103 |
+
)
|