import numpy as np import pandas as pd def get_physical_db(): """ Reads the physical_database.csv file from the physical_db directory and returns a pandas DataFrame containing only the columns 'Code_Sector', 'Azimut', 'Longitude', 'Latitude', and 'Hauteur'. Returns: pd.DataFrame: A DataFrame containing the filtered columns. """ physical = pd.read_csv(r"physical_db\physical_database.csv") physical = physical[["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur"]] return physical class UtilsVars: sector_mapping = {4: 1, 5: 2, 6: 3, 11: 1, 12: 2, 13: 3} channeltype_mapping = {4: "BCCH", 3: "TCH"} final_lte_database = "" final_gsm_database = "" final_wcdma_database = "" physisal_db = get_physical_db() # print(UtilsVars.physisal_db) def get_band(text): """ Extract the band from the given string. Parameters ---------- text : str The string to extract the band from. Returns ------- str or np.nan The extracted band, or NaN if the text was not a string or did not contain any of the recognized bands (L1800, L2300, L800). """ if isinstance(text, str): # Check if text is a string if "L1800" in text: return "L1800" elif "L2300" in text: return "L2300" elif "L800" in text: return "L800" return np.nan # or return None