Spaces:
Sleeping
Sleeping
File size: 6,602 Bytes
55478d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import cv2
import numpy as np
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset
from random import random, choice, shuffle
from io import BytesIO
from PIL import Image
from PIL import ImageFile
from scipy.ndimage.filters import gaussian_filter
import pickle
import os
from skimage.io import imread
from copy import deepcopy
ImageFile.LOAD_TRUNCATED_IMAGES = True
MEAN = {
"imagenet":[0.485, 0.456, 0.406],
"clip":[0.48145466, 0.4578275, 0.40821073]
}
STD = {
"imagenet":[0.229, 0.224, 0.225],
"clip":[0.26862954, 0.26130258, 0.27577711]
}
def recursively_read(rootdir, must_contain, exts=["png", "jpg", "JPEG", "jpeg"]):
out = []
for r, d, f in os.walk(rootdir):
for file in f:
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)):
out.append(os.path.join(r, file))
return out
def get_list(path, must_contain=''):
if ".pickle" in path:
with open(path, 'rb') as f:
image_list = pickle.load(f)
image_list = [ item for item in image_list if must_contain in item ]
else:
image_list = recursively_read(path, must_contain)
return image_list
class RealFakeDataset(Dataset):
def __init__(self, opt):
assert opt.data_label in ["train", "val"]
#assert opt.data_mode in ["ours", "wang2020", "ours_wang2020"]
self.data_label = opt.data_label
if opt.data_mode == 'ours':
pickle_name = "train.pickle" if opt.data_label=="train" else "val.pickle"
real_list = get_list( os.path.join(opt.real_list_path, pickle_name) )
fake_list = get_list( os.path.join(opt.fake_list_path, pickle_name) )
elif opt.data_mode == 'wang2020':
temp = 'train/progan' if opt.data_label == 'train' else 'test/progan'
real_list = get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='0_real' )
fake_list = get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='1_fake' )
elif opt.data_mode == 'ours_wang2020':
pickle_name = "train.pickle" if opt.data_label=="train" else "val.pickle"
real_list = get_list( os.path.join(opt.real_list_path, pickle_name) )
fake_list = get_list( os.path.join(opt.fake_list_path, pickle_name) )
temp = 'train/progan' if opt.data_label == 'train' else 'test/progan'
real_list += get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='0_real' )
fake_list += get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='1_fake' )
# setting the labels for the dataset
self.labels_dict = {}
for i in real_list:
self.labels_dict[i] = 0
for i in fake_list:
self.labels_dict[i] = 1
self.total_list = real_list + fake_list
shuffle(self.total_list)
if opt.isTrain:
crop_func = transforms.RandomCrop(opt.cropSize)
elif opt.no_crop:
crop_func = transforms.Lambda(lambda img: img)
else:
crop_func = transforms.CenterCrop(opt.cropSize)
if opt.isTrain and not opt.no_flip:
flip_func = transforms.RandomHorizontalFlip()
else:
flip_func = transforms.Lambda(lambda img: img)
if not opt.isTrain and opt.no_resize:
rz_func = transforms.Lambda(lambda img: img)
else:
rz_func = transforms.Lambda(lambda img: custom_resize(img, opt))
stat_from = "imagenet" if opt.arch.lower().startswith("imagenet") else "clip"
print("mean and std stats are from: ", stat_from)
if '2b' not in opt.arch:
print ("using Official CLIP's normalization")
self.transform = transforms.Compose([
rz_func,
transforms.Lambda(lambda img: data_augment(img, opt)),
crop_func,
flip_func,
transforms.ToTensor(),
transforms.Normalize( mean=MEAN[stat_from], std=STD[stat_from] ),
])
else:
print ("Using CLIP 2B transform")
self.transform = None # will be initialized in trainer.py
def __len__(self):
return len(self.total_list)
def __getitem__(self, idx):
img_path = self.total_list[idx]
label = self.labels_dict[img_path]
img = Image.open(img_path).convert("RGB")
img = self.transform(img)
return img, label
def data_augment(img, opt):
img = np.array(img)
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
img = np.repeat(img, 3, axis=2)
if random() < opt.blur_prob:
sig = sample_continuous(opt.blur_sig)
gaussian_blur(img, sig)
if random() < opt.jpg_prob:
method = sample_discrete(opt.jpg_method)
qual = sample_discrete(opt.jpg_qual)
img = jpeg_from_key(img, qual, method)
return Image.fromarray(img)
def sample_continuous(s):
if len(s) == 1:
return s[0]
if len(s) == 2:
rg = s[1] - s[0]
return random() * rg + s[0]
raise ValueError("Length of iterable s should be 1 or 2.")
def sample_discrete(s):
if len(s) == 1:
return s[0]
return choice(s)
def gaussian_blur(img, sigma):
gaussian_filter(img[:,:,0], output=img[:,:,0], sigma=sigma)
gaussian_filter(img[:,:,1], output=img[:,:,1], sigma=sigma)
gaussian_filter(img[:,:,2], output=img[:,:,2], sigma=sigma)
def cv2_jpg(img, compress_val):
img_cv2 = img[:,:,::-1]
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), compress_val]
result, encimg = cv2.imencode('.jpg', img_cv2, encode_param)
decimg = cv2.imdecode(encimg, 1)
return decimg[:,:,::-1]
def pil_jpg(img, compress_val):
out = BytesIO()
img = Image.fromarray(img)
img.save(out, format='jpeg', quality=compress_val)
img = Image.open(out)
# load from memory before ByteIO closes
img = np.array(img)
out.close()
return img
jpeg_dict = {'cv2': cv2_jpg, 'pil': pil_jpg}
def jpeg_from_key(img, compress_val, key):
method = jpeg_dict[key]
return method(img, compress_val)
rz_dict = {'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'lanczos': Image.LANCZOS,
'nearest': Image.NEAREST}
def custom_resize(img, opt):
interp = sample_discrete(opt.rz_interp)
return TF.resize(img, opt.loadSize, interpolation=rz_dict[interp])
|