File size: 6,602 Bytes
55478d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import cv2
import numpy as np
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset
from random import random, choice, shuffle
from io import BytesIO
from PIL import Image
from PIL import ImageFile
from scipy.ndimage.filters import gaussian_filter
import pickle
import os 
from skimage.io import imread
from copy import deepcopy

ImageFile.LOAD_TRUNCATED_IMAGES = True


MEAN = {
    "imagenet":[0.485, 0.456, 0.406],
    "clip":[0.48145466, 0.4578275, 0.40821073]
}

STD = {
    "imagenet":[0.229, 0.224, 0.225],
    "clip":[0.26862954, 0.26130258, 0.27577711]
}




def recursively_read(rootdir, must_contain, exts=["png", "jpg", "JPEG", "jpeg"]):
    out = [] 
    for r, d, f in os.walk(rootdir):
        for file in f:
            if (file.split('.')[1] in exts)  and  (must_contain in os.path.join(r, file)):
                out.append(os.path.join(r, file))
    return out


def get_list(path, must_contain=''):
    if ".pickle" in path:
        with open(path, 'rb') as f:
            image_list = pickle.load(f)
        image_list = [ item for item in image_list if must_contain in item   ]
    else:
        image_list = recursively_read(path, must_contain)
    return image_list




class RealFakeDataset(Dataset):
    def __init__(self, opt):
        assert opt.data_label in ["train", "val"]
        #assert opt.data_mode in ["ours", "wang2020", "ours_wang2020"]
        self.data_label  = opt.data_label
        if opt.data_mode == 'ours':
            pickle_name = "train.pickle" if opt.data_label=="train" else "val.pickle"
            real_list = get_list( os.path.join(opt.real_list_path, pickle_name) )
            fake_list = get_list( os.path.join(opt.fake_list_path, pickle_name) )
        elif opt.data_mode == 'wang2020':
            temp = 'train/progan' if opt.data_label == 'train' else 'test/progan'
            real_list = get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='0_real' )
            fake_list = get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='1_fake' )
        elif opt.data_mode == 'ours_wang2020':
            pickle_name = "train.pickle" if opt.data_label=="train" else "val.pickle"
            real_list = get_list( os.path.join(opt.real_list_path, pickle_name) )
            fake_list = get_list( os.path.join(opt.fake_list_path, pickle_name) )
            temp = 'train/progan' if opt.data_label == 'train' else 'test/progan'
            real_list += get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='0_real' )
            fake_list += get_list( os.path.join(opt.wang2020_data_path,temp), must_contain='1_fake' )



        # setting the labels for the dataset
        self.labels_dict = {}
        for i in real_list:
            self.labels_dict[i] = 0
        for i in fake_list:
            self.labels_dict[i] = 1

        self.total_list = real_list + fake_list
        shuffle(self.total_list)
        if opt.isTrain:
            crop_func = transforms.RandomCrop(opt.cropSize)
        elif opt.no_crop:
            crop_func = transforms.Lambda(lambda img: img)
        else:
            crop_func = transforms.CenterCrop(opt.cropSize)

        if opt.isTrain and not opt.no_flip:
            flip_func = transforms.RandomHorizontalFlip()
        else:
            flip_func = transforms.Lambda(lambda img: img)
        if not opt.isTrain and opt.no_resize:
            rz_func = transforms.Lambda(lambda img: img)
        else:
            rz_func = transforms.Lambda(lambda img: custom_resize(img, opt))
        

        stat_from = "imagenet" if opt.arch.lower().startswith("imagenet") else "clip"

        print("mean and std stats are from: ", stat_from)
        if '2b' not in opt.arch:
            print ("using Official CLIP's normalization")
            self.transform = transforms.Compose([
                rz_func,
                transforms.Lambda(lambda img: data_augment(img, opt)),
                crop_func,
                flip_func,
                transforms.ToTensor(),
                transforms.Normalize( mean=MEAN[stat_from], std=STD[stat_from] ),
            ])
        else:
            print ("Using CLIP 2B transform")
            self.transform = None # will be initialized in trainer.py


    def __len__(self):
        return len(self.total_list)


    def __getitem__(self, idx):
        img_path = self.total_list[idx]
        label = self.labels_dict[img_path]
        img = Image.open(img_path).convert("RGB")
        img = self.transform(img)
        return img, label


def data_augment(img, opt):
    img = np.array(img)
    if img.ndim == 2:
        img = np.expand_dims(img, axis=2)
        img = np.repeat(img, 3, axis=2)

    if random() < opt.blur_prob:
        sig = sample_continuous(opt.blur_sig)
        gaussian_blur(img, sig)

    if random() < opt.jpg_prob:
        method = sample_discrete(opt.jpg_method)
        qual = sample_discrete(opt.jpg_qual)
        img = jpeg_from_key(img, qual, method)

    return Image.fromarray(img)


def sample_continuous(s):
    if len(s) == 1:
        return s[0]
    if len(s) == 2:
        rg = s[1] - s[0]
        return random() * rg + s[0]
    raise ValueError("Length of iterable s should be 1 or 2.")


def sample_discrete(s):
    if len(s) == 1:
        return s[0]
    return choice(s)


def gaussian_blur(img, sigma):
    gaussian_filter(img[:,:,0], output=img[:,:,0], sigma=sigma)
    gaussian_filter(img[:,:,1], output=img[:,:,1], sigma=sigma)
    gaussian_filter(img[:,:,2], output=img[:,:,2], sigma=sigma)


def cv2_jpg(img, compress_val):
    img_cv2 = img[:,:,::-1]
    encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), compress_val]
    result, encimg = cv2.imencode('.jpg', img_cv2, encode_param)
    decimg = cv2.imdecode(encimg, 1)
    return decimg[:,:,::-1]


def pil_jpg(img, compress_val):
    out = BytesIO()
    img = Image.fromarray(img)
    img.save(out, format='jpeg', quality=compress_val)
    img = Image.open(out)
    # load from memory before ByteIO closes
    img = np.array(img)
    out.close()
    return img


jpeg_dict = {'cv2': cv2_jpg, 'pil': pil_jpg}
def jpeg_from_key(img, compress_val, key):
    method = jpeg_dict[key]
    return method(img, compress_val)


rz_dict = {'bilinear': Image.BILINEAR,
           'bicubic': Image.BICUBIC,
           'lanczos': Image.LANCZOS,
           'nearest': Image.NEAREST}
def custom_resize(img, opt):
    interp = sample_discrete(opt.rz_interp)
    return TF.resize(img, opt.loadSize, interpolation=rz_dict[interp])